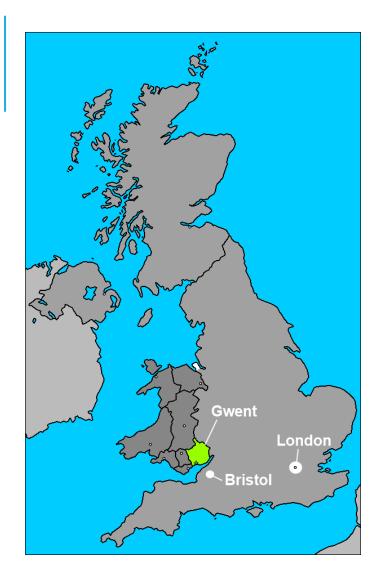
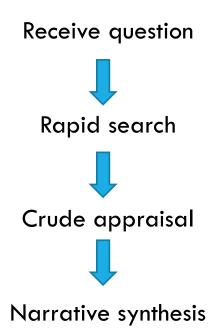

CADTH Lecture Series



ALL THAT GLITTERS IS NOT GOLD - ARE SYSTEMATIC REVIEWS FOOL'S GOLD?

Jon Brassey



WHERE IT STARTED

ATTRACT

10,000 CLINICAL QUESTIONS

Clinicians want easy access to robust answers to their clinical questions = rapid reviews

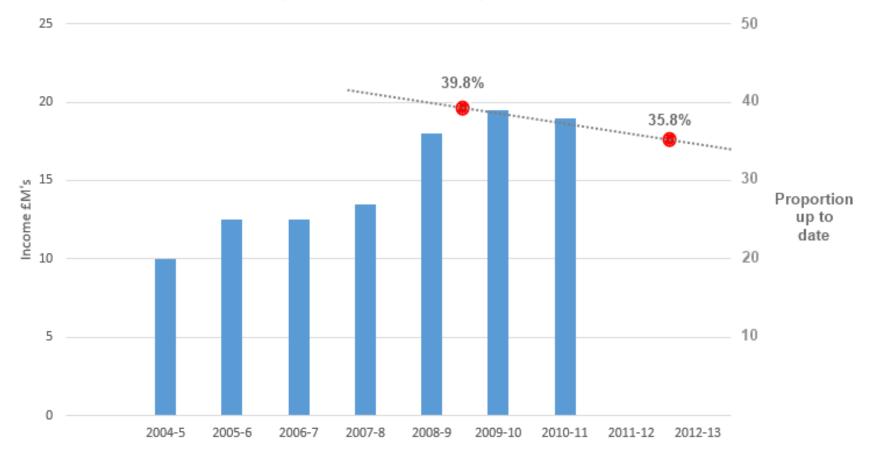
~70% users are health professionals (50% are doctors)

~30% are information specialists

110,000 www.tripdatabase.com registered 100 million+ searches users

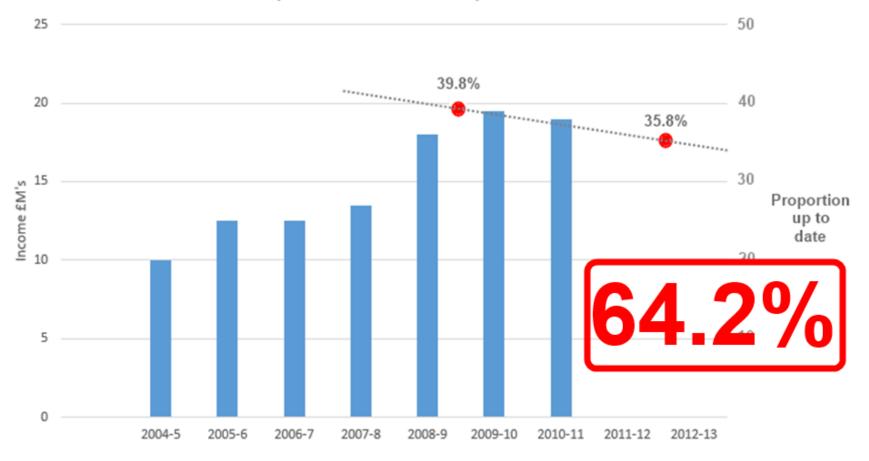
OUTLINE OF PRESENTATION

- 1. Problems with current systematic review systems
- 2. Rapid reviews
- 3. Trip some interesting areas of work we're currently involved in


SYSTEMATIC REVIEW DEFINITION

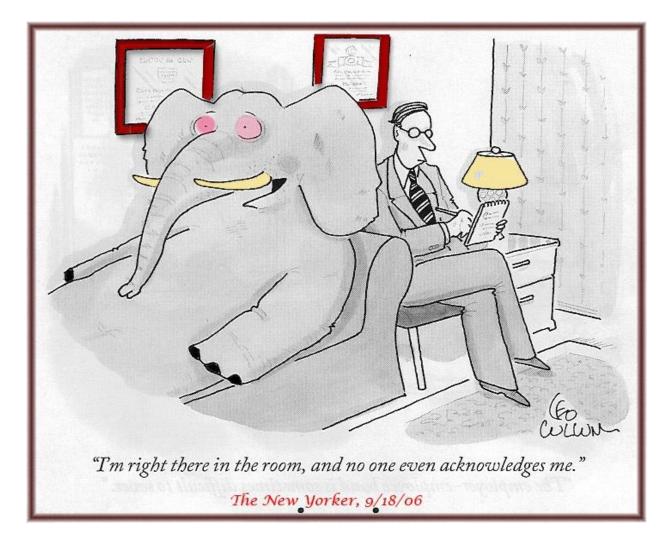
A systematic review is a high-level overview of primary research on a particular research question that tries to identify, select, synthesize and appraise **all** high quality research evidence relevant to that question in order to answer it.

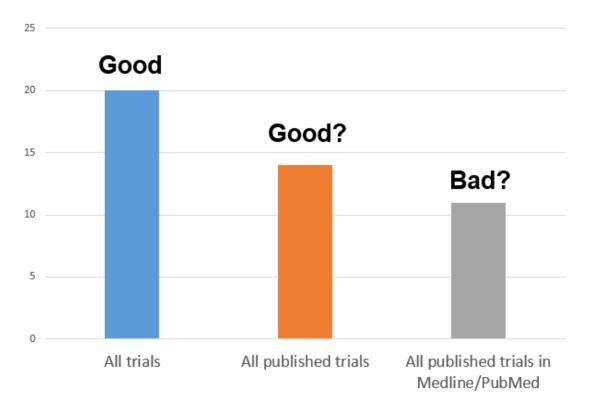
Cochrane Collaboration



Expenditure and currency

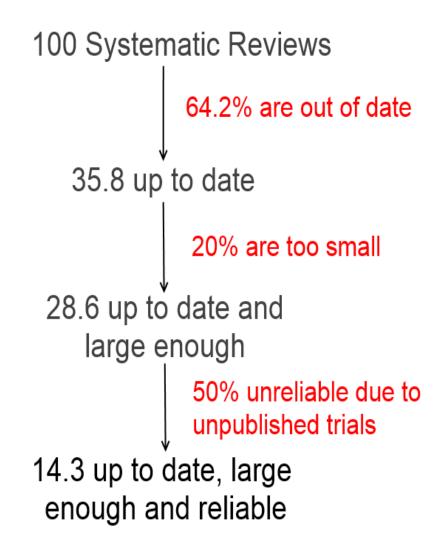
Sources: The Cochrane Library and Oversight Committee. Nov 14, 2012 and Annual Report and Financial Statements 2010/11


Expenditure and currency



Sources: The Cochrane Library and Oversight Committee. Nov 14, 2012 and Annual Report and Financial Statements 2010/11

Too small to give accurate assessment of effect size


Schroll JB, Bero L, Gøtzsche PC. Searching for unpublished data for Cochrane reviews: cross sectional study.


BMJ. 2013 Apr 23;346

- Turner et al. Selective publication of antidepressant trials and its influence on apparent efficacy. NEJM 2008
- Compared outcomes and effect sizes from published trials with those registered with FDA
- 31% of FDA-registered studies not published
- 37 v 1 published v unpublished for +ve studies
- 3 v 33 published v unpublished for -ve studies
- Overall 32% increase in effect size for meta-analyses of published trials versus FDA

- Hart et al. Effect of reporting bias on meta-analyses of drug trials: reanalysis of meta-analyses. BMJ 2011
- 42 meta-analyses for nine drugs across six drug classes were reanalysed
- 3/41 (7%) gave identical estimates of effect
- 19/41 (46%) showed lower efficacy of the drug
- 19/41 (46%) showed greater efficacy of the drug
- In \sim 50% of cases the difference was greater than 10%

50% unreliable

YET MORE DATA

- Year on year increase in number of RCTs being carried out
- AllTrials initiative
- Clinical Study Reports (Nordic Cochrane Centre)

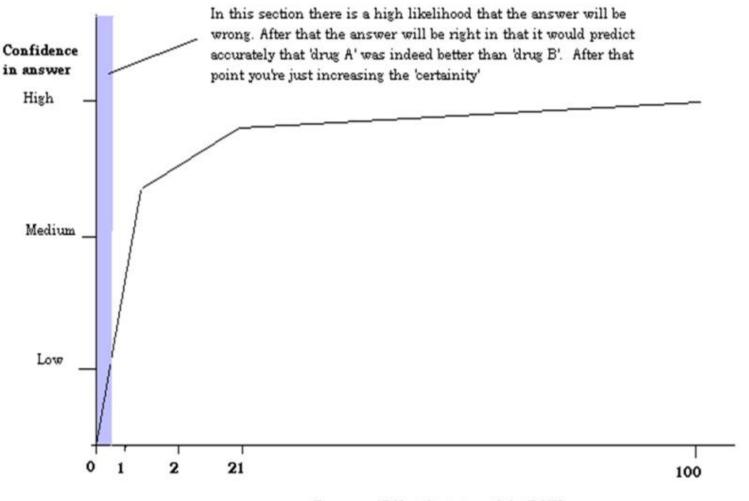
RESOURCE NEEDS TO BE MANAGED

Gatekeeper role before large resource expenditure:

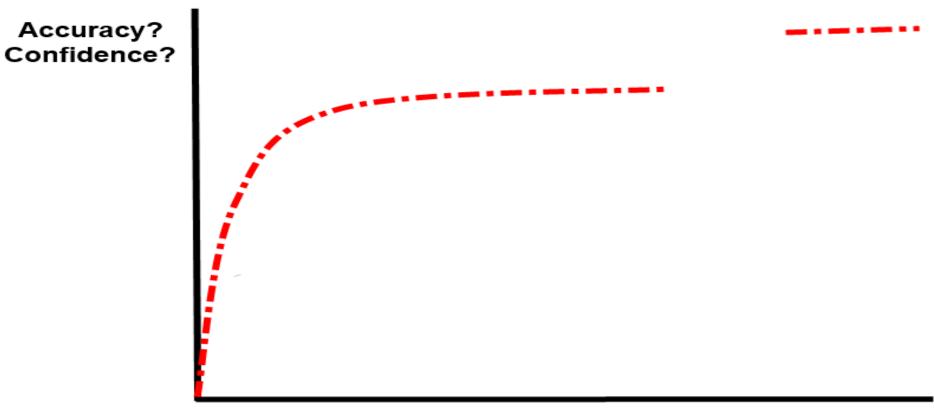
- Outcomes relevant to patients
- Effect size likely to be clinically significant
- No forthcoming clinical trials

If 'worthy' need to decide which method:

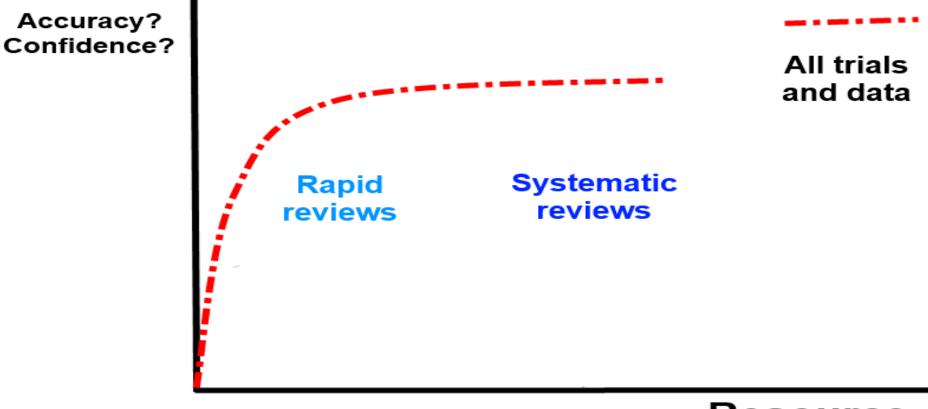
- 'Standard' systematic review method
- More robust Tamiflu style SR based on CSRs or Individual Patient Data (IPD)


RAPID REVIEWS - SEMANTICS

Rapid v systematic


RAPID V SYSTEMATIC

Time-based?	Resource based?
5 minutes	Number of databases
1 day	Bias detection
1 week	Level of synthesis
1 month	Cost
1 year	


Certainly not 'accuracy'

Resource/Effort (not to scale) - DAYS

Resource (Not to scale)

Resource (Not to scale)

WHAT IS THE ANSWER?

WHAT IS THE QUESTION?

WHY ARE YOU DOING THE REVIEW?

1. Know if intervention A is better than intervention B

2. To quantify how much better A is over B

3. To see what research has been carried out before to avoid waste

4. Assess for adverse events

RAPID REVIEWS ARE PROBLEMATIC

- Semantics
- Diversity of methods
- Little evidence base to guide methods
- No obvious rapid review intellectual core
- Sometime poor perception

WHAT TO DO?

- Coordination
- Develop an intellectual core to guide development
- Develop robust, transparent methods
- Develop a clear narrative

MY INVOLVEMENT IN RAPID REVIEWS

- 4 hour manual rapid review
- Random selection of Cochrane systematic reviews
- Quick search of PubMed Clinical Queries
- Abstracts not appraised simply scored
 - +2 = positive and significant
 - +1 = positive
 - 0 = no clear benefit
 - -1 = negative
 - 2 = negative and significant
- 85% agreement with Cochrane systematic reviews

WHAT ABOUT 5 MINUTE REVIEWS?

- Mirrored the previous approach but semi-automated it
- Used machine learning/sentiment analysis to learn what was a positive study and what was negative
- Also used machine reading to identify study size and adjusted the score accordingly
- Result = average score
- 85% agreement with Cochrane reviews

AUTOMATION — OTHER GROUPS

- Paul Glasziou 'The automation of systematic reviews', BMJ 2013 Citation analysis/matching
- EPPI Centre
 Machine learning assist

Machine-learning assisted screening process

• Many others:

Auto-detection of effect sizes Auto assessment for bias

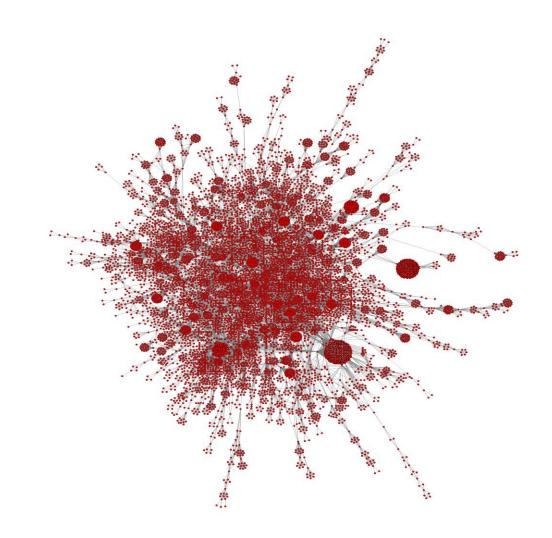
- Typically follow the systematic review methods/principles
- All problematic

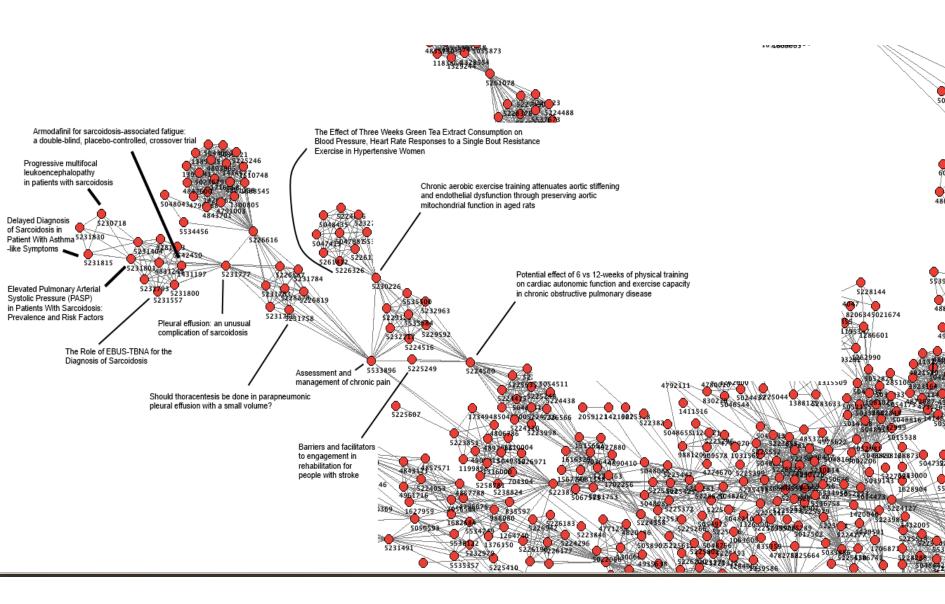
MACHINE LEARNING — CURRENTLY LIMITED

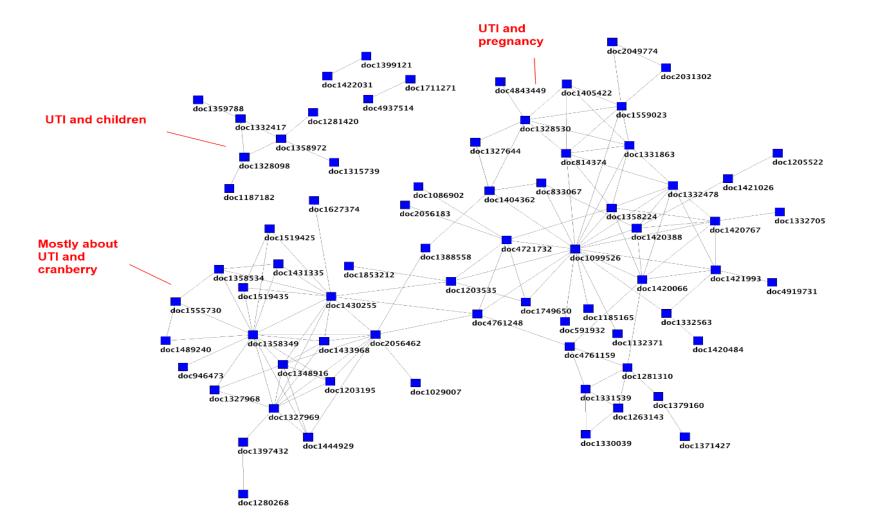
- The pooled NNT for response across all trials (as defined by a Clinical Global Impressions-Improvement score of 'very much improved' or 'much improved') for LDX vs. placebo was 3 (95% CI 3-4), and NNT for remission (as defined by 4-week cessation of binge eating) for LDX vs. placebo was 4 (95% CI 4-6). <u>http://www.ncbi.nlm.nih.gov/pubmed/25752762?dopt=Abstract</u>
- Treatment efficacy was better in the S-14 group than it was in the T-14 group in both the ITT analysis (number needed to treat of 12:0 [95% CI 7:2-34:5]; p=0:003) and PP analyses (13:7 [8:3-40], p=0:003). http://www.ncbi.nlm.nih.gov/pubmed/23158886
- Patients in the intervention group were nearly twice as likely to report at least a 30% improvement in their pain score by 12 months (51.7% vs 27.1%; relative risk, 1.9 [95% CI, 1.4 to 2.7]), with a number needed to treat of 4.1 (95% CI, 3.0 to 6.4) for a 30% improvement. <u>http://www.ncbi.nlm.nih.gov/pubmed/25027139</u>
- The number needed to treat (NNT) with FB-CBT vs FB-RT was estimated as 3.2 (95% CI, 2.2-5.8). <u>http://www.ncbi.nlm.nih.gov/pubmed/24759852?dopt=Abstract</u>

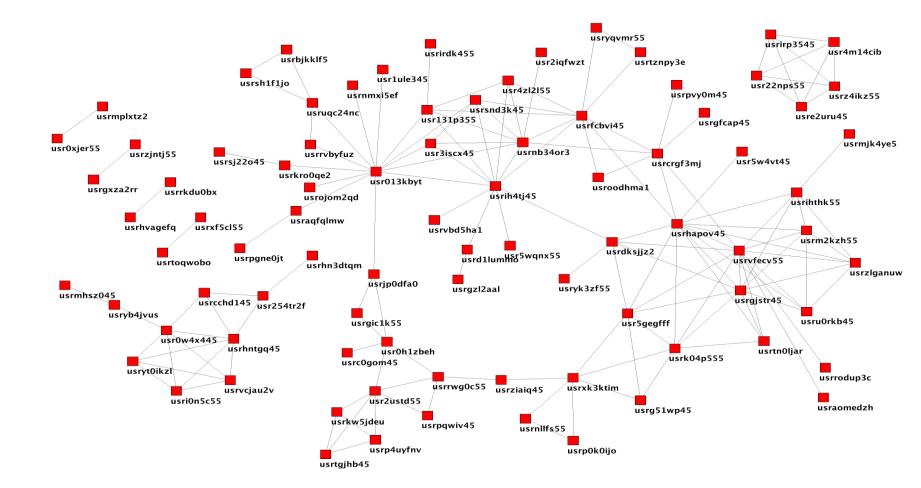
Allan Hanbury, Vienna University of Technology and lead for KConnect

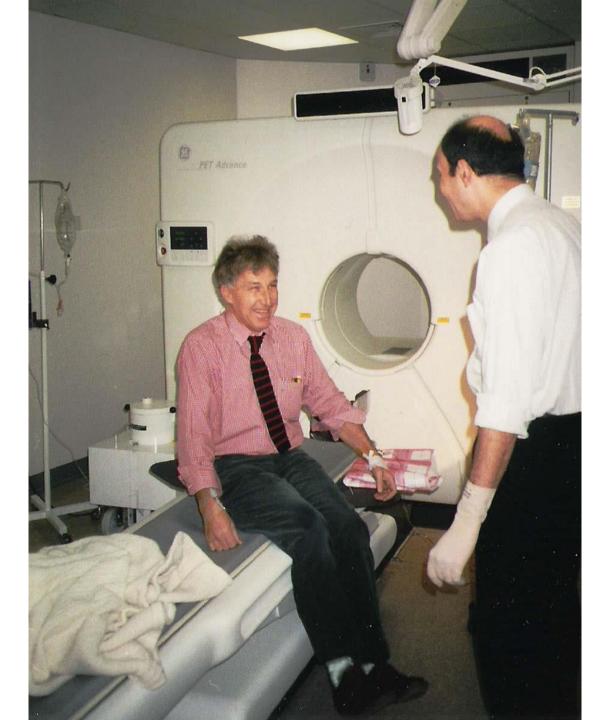
"this is rather difficult"


MOVING FORWARD




- EU Funded via Horizon 2020
- Improved methods including head-to-head trials
- Relatedness 'auto aggregate' new studies with existing reviews
- Machine reading and semantic annotation of CSRs
- Multilingual


CLICKSTREAM DATA


- A user searches and clicks on documents 1, 4 and 5
- We say, for that user's intention, they are connected
- By aggregating these connections we can map the medical literature
- Structure is rich and relatively untapped

Tuning:	Search for:	Estimated improvement:
Gain 2 (controls noise)	antibiotics Search	@ CTR dropoff 2 (typically about 2)
Clicks from last 785 days	= reordered text match	
User traffic Not logged in (85%)	= click-related non-text match	176.25 % (increase in integrated relevance*CTR)

Text Match Results:

Click-Through Filter Results:

Click-Through Filter Results:

Text Match Results:	Results enhanced		Click-Through Filter Results:		
Antibiotics	by clickstream data	4994288	Antibiotics for acute otitis media in children	1327	7489
Antibiotics	by clickstream data	1139696	Antibiotics in Acute Sinusitis	4975	5546
Antibiotics		1099722	Antibiotics for sore throat	1404	4458
Antibiotics		938645	Antibiotics for sore throat	1327	7299
COC and antibiotics		1162923	Antibiotics for COPD Exacerbation	1081	1654
Antibiotics Ototopical	Natural results for our test	815158	Antibiotics for acute bronchitis	1327	/509
Antibiotics penicillins		938647	Antibiotics for Animal Bites	1254	4916
Antibiotics for trachoma		1328227	Antibiotics for acute maxillary sinusitis	1327	/507
Antibiotics in cat bites		793524	Antibiotics for Sinusitis	1081	1662
Antibiotics for Sinusitis	system	1081662	Can UTIs be managed without antibiotics?	5623	3859
Swine flu and antibiotics.	System	955554	Short-course antibiotics for acute otitis media	1327	/823
Antibiotics for sore throat		1404458	Antibiotics for sore throat.	5030)518
Antibiotics for sore throat		1327299	Antibiotics for whooping cough (pertussis)	1329	3853
antibiotics in otitis media		1162485	Antibiotics for acute otitis media in children.	4827	7461
Antibiotics for sore throat.		5030518	Antibiotics for otitis media with effusion in children	1381	1026
Antibiotics for acute asthma		1328583	Antibiotics for acute bronchitis	1404	4606
Antibiotics for Animal Bites		1254916	Antibiotics for Acute Bronchitis	1300	0700
Antibiotics for Otitis Media		1081670	Antihiotics for preterm runture of membranes	1327	7702

Text Match Results:

			<u> </u>	
Antibiotics	Results enhanced	4991388	Antibiotics for acute bronchitis	1327509
Antibiotics		1139696	Guideline Summary: Clinical practice guideline on acute bronchiolitis	1411536
Antibiotics	by clickstream data	1099722	Preoperative antibiotics may decrease dental implant failure	1266300
Antibiotics	of dentists	938645	Interventions for replacing missing teeth: antibiotics at dental implan	1329661
COC and antibiotics		1162923	Study suggests that systemic antibiotics are not necessary for single d	1411737
Antibiotics Ototopical		815158	Interventions for replacing missing teeth: antibiotics at dental implan	4793999
Antibiotics penicillins		938647	Efficacy of prophylactic antibiotics for dental implants: a multicentre	1726219
Antibiotics for trachoma		1328227	Review suggests that antibiotics are beneficial for reducing failure of	4793573
Antibiotics in cat bites	bites	793524	Antibiotics	4991388
Antibiotics for Sinusitis	Natural results	1081662	Antibiotics	1139696
Swine flu and antibiotics.	for our test	955554	Antibiotics	1099722
Antibiotics for sore throat		1404458	Antibiotics	938645
Antibiotics for sore throat	system	1327299	Improving diagnostic testing and reducing overuse of antibiotics for ch	527821
antibiotics in otitis media		1162485	The application of ozone in dentistry: a systematic review of literature.	5121429
Antibiotics for sore throat.		5030518	Evidence-based guidelines for cone beam CT for dental and maxillofacial	1410966
Antibiotics for acute asthma		1328583	Review suggests that incomplete caries removal advantageous particularl	1411608
Antibiotics for Animal Bites		1254916	Effectiveness of prophylactic antibiotics at placement of dental implan	1644242
Antibiotice for Otitie Marlia		1021670	Evaluation of a rapid antigen detection test in the diagnosis of strent	756262

WHERE TRIP IS HEADING

- Personalised results
- Instant answers
- 'Sensemaking' of results
- Community to seek answers
- Sound business model

THE FUTURE

Exciting

Both for Rapid Reviews and Trip

IN CONCLUSION

- Current methods for evidence synthesis are flawed
- Needs innovation and reflection
- Rapid reviews are a necessity
- There needs to be a coherent rapid review position including nomenclature
- Automation will be a huge help
- Trip hopes to play a leading role

CADTH Lecture Series

