Canadian Agency for Drugs and Technologies in Health



Agence canadienne des médicaments et des technologies de la santé

# CADTH OPTIMAL USE REPORT

Volume 3, Issue 1A July 2013 Second-Line Pharmacotherapy for Type 2 Diabetes — Update

Supporting Informed Decisions

This report is prepared by the Canadian Agency for Drugs and Technologies in Health (CADTH). The report contains a comprehensive review of the existing public literature, studies, materials, and other information and documentation (collectively the "source documentation") available to CADTH at the time of report preparation.

The information in this report, when finalized, is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. The information in this report should not be used as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process, nor is it intended to replace professional medical advice. While CADTH has taken care in the preparation of this document to ensure that its contents are accurate, complete, and up to date as of the date of publication, CADTH does not make any guarantee to that effect. CADTH is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in the source documentation. CADTH is not responsible for any errors or omissions or injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the information in this document or in any of the source documentation.

This document and the information provided are prepared and intended for use in the context of the Canadian health care system. Other health care systems are different; the issues and information related to the subject matter of this document may be different in other jurisdictions and, if used outside of Canada, it is at the user's risk. This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.

CADTH takes sole responsibility for the final form and content of this document, subject to the limitations noted above. The statements and conclusions in this document are those of CADTH and not of its advisory committees and reviewers. The statements, conclusions, and views expressed herein do not necessarily represent the views of Health Canada or any Canadian provincial or territorial government. Production of this document is made possible by financial contributions from Health Canada and the governments of Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Northwest Territories, Nova Scotia, Nunavut, Prince Edward Island, Saskatchewan, and Yukon.

This report is shared for feedback and comments and should not be used for any purposes other than for consultation. The report may change following this consultation.

Please contact CADTH's Vice-President of Corporate Services at <u>corporateservices@cadth.ca</u> with any inquiries about this notice or other legal matters relating to CADTH's services.

*Cite as:* Canadian Agency for Drugs and Technologies in Health. Second-line pharmacotherapy for type 2 diabetes — Update. Ottawa: The Agency; 2013. (CADTH optimal use report; vol.3, no. 1a).

ISSN: 1927-0127

# TABLE OF CONTENTS

| AB  | BREVIATIONS       iii         CCUTIVE SUMMARY       iv         CONTEXT AND POLICY ISSUES       1         1.1       Background       1         1.2       Rationale for Updating the Review of Second-Line Pharmacotherapy       1         1.3       Description of Second-Line Agents for Type 2 Diabetes       1         SYSTEMATIC REVIEW       3       3         2.1       Objective       3         2.2.1       Research Questions       3         2.2.2       Literature Search       3         2.2.3       Eligibility Criteria       3         2.2.4       Outcomes of Interest       4         2.2.5       Literature Selection, Data Extraction, and Critical Appraisal       4         2.3       Results       5         2.3.1       Literature Selection       5         2.3.2       Characteristics of Included Trials       7         2.3.3       Critical Appraisal       7         2.3.4       Data Synthesis       8         2.3.5       Efficacy Results       9         3.4       Data Synthesis       10         PHARMACOECONOMIC ANALYSIS       15         3.2.1       Tope of Economic Evaluation       15 <tr< th=""></tr<> |        |                                                               |    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------|----|
| EXE | CUTIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E SUMI | MARY                                                          | iv |
| 1   | CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EXT AN | D POLICY ISSUES                                               | 1  |
|     | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Backg  | round                                                         | 1  |
|     | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ratior | nale for Updating the Review of Second-Line Pharmacotherapy   | 1  |
|     | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Descri | iption of Second-Line Agents for Type 2 Diabetes              | 1  |
| 2   | SYSTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ΜΑΤΙϹ  | REVIEW                                                        | 3  |
|     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Objec  | tive                                                          | 3  |
|     | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metho  | ods                                                           | 3  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2.1  | Research Questions                                            | 3  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2.2  | Literature Search                                             | 3  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2.3  | Eligibility Criteria                                          | 3  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2.4  | Outcomes of Interest                                          | 4  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2.5  | Literature Selection, Data Extraction, and Critical Appraisal | 4  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2.6  | Statistical Analysis                                          | 4  |
|     | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result | ts                                                            | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3.1  | Literature Selection                                          | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3.2  | Characteristics of Included Trials                            | 7  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3.3  | Critical Appraisal                                            | 7  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3.4  | Data Synthesis                                                | 8  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3.5  | Efficacy Results                                              | 9  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3.6  | Safety Results                                                | 0  |
| 3   | PHAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ΜΑϹΟΕ  | CONOMIC ANALYSIS 1                                            | .5 |
|     | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Objec  | tive 1                                                        | 5  |
|     | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Meth   | ods 1                                                         | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.1  | Type of Economic Evaluation1                                  | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.2  | Target Population1                                            | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.3  | Treatments1                                                   | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.4  | Perspective1                                                  | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.5  | Efficacy and Safety 1                                         | 5  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.6  | Time Horizon1                                                 | 6  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.7  | Modelling 1                                                   | 6  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.8  | Costs                                                         | 6  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.9  | Valuing Outcomes 1                                            | 9  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2.10 | ) Handling of Uncertainty 2                                   | 0  |

|     | 3.3    |       | ılts                                                                     |    |
|-----|--------|-------|--------------------------------------------------------------------------|----|
|     |        | 3.3.1 | Reference Case                                                           | 21 |
|     |        | 3.3.2 | 2 Sensitivity Analyses                                                   | 22 |
|     |        | 3.3.3 | 3 Threshold Analysis                                                     | 23 |
| 4   | DISCU  | SSION | ١                                                                        | 25 |
|     | 4.1    | Inter | pretation of Systematic Review Results                                   | 25 |
|     | 4.2    |       | macoeconomic Considerations                                              |    |
|     | 4.3    | Strer | ngths and Limitations                                                    | 27 |
| 5   | CONCL  | USIO  | NS AND IMPLICATIONS FOR DECISION- OR POLICY-MAKING                       | 29 |
| 6   | REFER  | ENCES | S                                                                        | 30 |
| APF | PENDIX | 1: L  | Literature Search Strategy                                               | 45 |
| APF | PENDIX | 2: 9  | Study Characteristics                                                    | 56 |
| APF | PENDIX | 3: 0  | Comparison of Results from NMA (BLACK) and Direct Pairwise (BLUE)        |    |
|     |        | ſ     | Meta-Analyses for A1C (%) (A), Weight (kg) (B), Overall Hypoglycemia (C) | 63 |
| APF | PENDIX | 4: ľ  | Network Meta-Analysis of Individual Agents                               | 66 |
| APF | PENDIX |       | Severe Hypoglycemia Results in Included Trials                           |    |
|     |        | (     | (Original Review and Update)                                             | 68 |
| APF | PENDIX | 6: 9  | Serious Adverse Events in Included Trials (Original Review and Update)   | 69 |
| APF | PENDIX | 7: 9  | Summary of Model-Fit Parameters and Ranking                              | 70 |
| APF | PENDIX | 8: 9  | Summary of RCTs That Were Not Included in the NMA                        | 72 |
| APF | PENDIX | 9: 0  | Critical Appraisal of Included RCTs (Original Review and Update)         | 73 |
| APF | PENDIX |       | Results of Pharmacoeconomic Sensitivity Analyses                         |    |
| APF | PENDIX | 11: E | Base-Case Results from the 2010 CADTH Pharmacoeconomic Report            | 83 |
| APF | PENDIX | 12: 9 | Sensitivity Analyses from 2010 CADTH Pharmacoeconomic Report             | 84 |

# ABBREVIATIONS

| A1C    | glycated hemoglobin                                               |
|--------|-------------------------------------------------------------------|
| BMI    | body mass index                                                   |
| CADTH  | Canadian Agency for Drugs and Technologies in Health              |
| CERC   | COMPUS Expert Review Committee                                    |
| CHF    | congestive heart failure                                          |
| CI     | confidence interval                                               |
| COMPUS | Canadian Optimal Medication Prescribing and Utilization Service   |
| Crl    | credible interval                                                 |
| DPP-4  | dipeptidyl peptidase-4                                            |
| EQ-5D  | EuroQol 5-Dimension Questionnaire                                 |
| GLP-1  | glucagon-like peptide-1                                           |
| GRADE  | Grading of Recommendations Assessment, Development and Evaluation |
| HRQoL  | health-related quality of life                                    |
| ICUR   | incremental cost-utility ratio                                    |
| MC     | multi-centre                                                      |
| MD     | mean difference                                                   |
| Met    | metformin                                                         |
| MTC    | mixed-treatment comparison                                        |
| Ν      | total number of patients                                          |
| N/A    | not applicable                                                    |
| NICE   | National Institute for Health and Clinical Excellence             |
| NMA    | network meta-analysis                                             |
| NPH    | neutral protamine Hagedorn                                        |
| OR     | odds ratio                                                        |
| QALY   | quality-adjusted life-year                                        |
| RCT    | randomized controlled trial                                       |
| RR     | relative risk                                                     |
| SAE    | serious adverse event                                             |
| SD     | standard deviation                                                |
| SIGN   | Scottish Intercollegiate Guidelines Network                       |
| SU     | sulfonylurea                                                      |
| TZD    | thiazolidinediones                                                |
| UKPDS  | United Kingdom Prospective Diabetes Study                         |
| WMD    | weighted mean difference                                          |
|        |                                                                   |

# **EXECUTIVE SUMMARY**

#### **Context and Policy Issues**

In August 2010, the Canadian Agency for Drugs and Technologies in Health (CADTH) published a systematic review and network meta-analysis (NMA) assessing the comparative safety and efficacy of all available classes of antihyperglycemic therapies added to metformin in patients with type 2 diabetes experiencing inadequate glycemic control on metformin monotherapy.<sup>1</sup> The results of this review indicated that there were no apparent differences in efficacy across the available drug classes. Based on a cost-utility analysis performed using the results of the systematic review, sulfonylureas were found to be the most cost-effective treatment option.<sup>1</sup> Based on these analyses, the COMPUS Expert Review Committee (CERC) recommended that most patients requiring a second treatment after metformin should be prescribed a sulfonylurea.<sup>2</sup>

Although the original systematic review included clinical evidence for glucagon-like peptide-1 (GLP-1) analogues, the cost-effectiveness analysis<sup>1</sup> and subsequent recommendations<sup>2</sup> could not address this class, as there were no agents approved for use in Canada at the time. Two GLP-1 analogues, exenatide (Byetta) and liraglutide (Victoza), have since been approved. Therefore, there is interest in updated optimal therapy recommendations for second-line therapy in type 2 diabetes that incorporate the GLP-1 analogues.

#### **Objectives and Research Questions**

The objective of this study was to perform an update of CADTH's original systematic review, NMA, and cost-effectiveness analysis of second-line diabetes pharmacotherapy. The research questions that were addressed in the update were the same as in the original review:

- 1. What is the comparative efficacy and safety of second-line antidiabetes drugs in adults with type 2 diabetes experiencing inadequate glycemic control on metformin monotherapy?
- 2. What is the cost-effectiveness of second-line antidiabetes drugs in adults with type 2 diabetes experiencing inadequate glycemic control on metformin monotherapy?

#### Methods

The literature searches used in the original CADTH reviews were updated to identify English language documents published between January 1, 2009 (the end date of the search for the original review), and May 7, 2012. Published literature was identified by searching the following bibliographic databases: MEDLINE with In-Process records & daily updates via Ovid; Embase via Ovid; The Cochrane Library via Ovid; and PubMed. Grey literature was identified by searching the Grey Matters checklist (<u>www.cadth.ca/resources/grey-matters</u>). These searches were supplemented by reviewing the bibliographies of key papers. Inclusion criteria for the updated review were similar to those in the previous analysis.

Compared with the original analysis, the updated review assessed a focused set of outcomes; i.e., those which were the primary considerations of CERC in developing the original recommendations. These include mortality, diabetes-related complications, glycated hemoglobin (A1C), body weight, hypoglycemia, and serious adverse events (SAEs). Bayesian network meta-analyses and direct pairwise meta-analyses were conducted in a similar manner to the original CADTH analysis.

The updated pharmacoeconomic study utilized similar methodology to the original analysis, except that GLP-1 analogues were modelled as a treatment option.<sup>1</sup> Other key revisions to the previous methods were:

- The latest United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (version 1.3) was used to forecast diabetes-related complications and cost consequences, and estimate incremental cost-utility ratios (ICURs) for each drug class added to metformin.<sup>3</sup>
- Treatment effect estimates were obtained from the updated systematic review and NMA.
- Costs for drugs, disease management, and long-term diabetes complications were updated to year 2012 costs and adjusted for inflation.

#### Key Findings of Systematic Review

An additional 27 articles met the eligibility criteria for the updated review. These included 20 newlyidentified randomized controlled trials (RCTs) and seven companion publications for studies that had been included in the original review. Including the update, the systematic review of second-line pharmacotherapy included a total of 69 unique RCTs. Evidence was available for the following eight drug classes: sulfonylureas (28 RCTs), dipeptidyl peptidase-4 (DPP-4) inhibitors (24 RCTs), thiazolidinediones (TZDs) (20 RCTs), GLP-1 analogues (14 RCTs), basal insulin (6 RCTs), alpha-glucosidase inhibitors (5 RCTs), meglitinides (4 RCTs), and biphasic insulin (4 RCTs). Thirty-five RCTs included a placebo treatment group.

Network meta-analyses were conducted for change from baseline in A1C, change from baseline in body weight, and overall hypoglycemia.

- A total of 56 RCTs (N = 27,773) were included in the updated NMA for A1C. All classes of second-line agents added to metformin significantly reduced A1C relative to metformin alone. The effect estimates ranged from -0.64% (95% CrI: -0.91, -0.38) for meglitinides to -1.06 (95% CrI: -1.32, -0.80) for biphasic insulins.
- A total of 35 RCTs were included in the NMA for changes from baseline in body weight (N = 20,178). Treatment with sulfonylureas, meglitinides, TZDs, basal insulin, and biphasic insulin resulted in significantly greater increases in body weight than metformin monotherapy (range 1.7 to 3.1 kg), with no significant differences between these classes. DPP-4 inhibitors and alpha-glucosidase inhibitors did not significantly affect body weight. The only drug class associated with a significant reduction in body weight versus metformin monotherapy was GLP-1 analogues (-1.8 kg, 95% CrI: -2.9 to -0.8).
- A total of 48 RCTs were included in the updated NMA for overall hypoglycemia (N = 24,284). Relative to metformin monotherapy, the risk of hypoglycemia was significantly elevated with insulins, sulfonylureas, and meglitinides (odds ratios [ORs] were 4.1 to 7.0 for insulins, 7.5 for sulfonylureas, and 8.3 for meglitinides). There was no significant increase in hypoglycemia risk with TZDs, alpha-glucosidase inhibitors, DPP-4 inhibitors or GLP-1 analogues.

For all three NMAs, there was good agreement between indirect and direct estimates, and between the updated and original analyses. The results were found to be robust in sensitivity analyses.

There were no adequately powered RCTs evaluating the comparative efficacy of any class of second-line pharmacotherapy for reducing clinically important long-term complications of diabetes. Episodes of severe hypoglycemia were rare for all drug classes (including insulin and insulin secretagogues), affecting 0.1% to 1.6% of the total patient population. Overall, there were no events reported in 40 of the 48 treatment arms. Severe adverse events occurred in 0.7% to 9.1% of patients across all but two

studies, both of which were long-term extension trials in which as many as 21% of patients experienced a severe adverse event.

#### **Key Findings of Economic Analysis**

Despite the introduction of GLP-1 analogues as a treatment option in the economic model and reduction in the prices of some agents, the results of the updated economic evaluation remained similar to those of the original analysis. Sulfonylureas remained the most cost- effective second-line therapy in patients inadequately controlled on metformin, with an ICUR of \$8,445 per quality-adjusted life-year gained. This was due primarily to the lower cost of agents in this drug class compared with insulin and newer agents, and similar efficacy regarding A1C lowering. Cost-effectiveness results were robust to variations in model inputs and assumptions. Threshold analyses indicated that the costs of DPP-4 inhibitors and GLP-1 analogues would have to be lower by 90% and 95%, respectively, in order to surpass sulfonylureas as the most cost-effective second-line treatment option.

#### **Strengths and Limitations**

The strengths of the systematic review were the rigorous and reproducible methods employed to identify relevant evidence and analyze the results. The NMAs were shown to be robust through various means: model diagnostic statistics were favourable, and there was good agreement between indirect and direct pairwise estimates. Although there was a degree of between-study heterogeneity in baseline A1C, duration of diabetes, reporting of metformin, and/or sulfonylurea doses at baseline, and glycemic targets, these factors did not appear to have a material impact given the consistency of results across the numerous sensitivity analyses and meta-regressions performed.

A key limitation of the available clinical evidence was the limited data on clinically relevant complications of diabetes, and the consequent need to rely on A1C as a surrogate outcome to assess comparative efficacy. Methodological limitations of the included RCTs were failure to report adequate methods for allocation concealment, the use of analyses other than intention-to-treat, and, in the case of trials of insulins, the frequent use of open-label designs. Rates of severe hypoglycemia were too low for meaningful comparisons between treatments of this important adverse event. Due to the relatively short duration of most included trials, it was impossible to accurately determine whether there were differences in the durability of antihyperglycemic effects across the various drug classes. Key limitations regarding the external validity of trials included the relatively short duration of trials, failure to report definitions for hypoglycemia and adverse events, and a level of contact between trial subjects and health care professionals that likely exceeds routine clinical practice. Furthermore, a number of trials were conducted in countries that may differ markedly from Canada in ethnic makeup, health system organization, or practice patterns.

Regarding limitations of the pharmacoeconomic analysis, it should be noted that the UKPDS model does not explicitly incorporate a number of diabetes-related morbidities (e.g., peripheral neuropathy and ulceration) or intermediate states (e.g., retinopathy and nephropathy) that may themselves be associated with reduced HRQoL. Hence, the UKPDS model may result in a slight overestimation of incremental cost-effectiveness ratios. However, the impact of this factor on cost-effectiveness estimates is likely small given the minimal differences in glycemic control across drug classes.

There was considerable uncertainty regarding the disutility associated with insulin use, weight gain, and hypoglycemia, as well as event rates for severe hypoglycemia. These are all important drivers of the cost-effectiveness of second-line options, particularly insulin secretagogues and insulins. In the absence

of sound data for these inputs, conservative estimates were used for the reference case analysis but were tested in sensitivity analyses.

In the reference case analysis, it was assumed that metformin plus the second-line treatment were continued at constant doses for the lifetime of the patient. Although this assumption allows for attribution of costs and consequences to the treatments in question, it does not represent the progressive nature of type 2 diabetes and the inevitable need for intensification of therapy over time. This limitation was addressed through a sensitivity analysis in which insulin neutral protamine Hagedorn (NPH) was added to all non-insulin second-line treatments once A1C reached 9%. Sulfonylureas remained the most cost-effective option in this analysis.

#### Conclusions and Implications for Decision- or Policy-Making

In this systematic review and NMA of RCT evidence related to the second-line use of antidiabetes therapies after inadequate control with metformin monotherapy, all drug classes added to metformin achieved statistically significant reductions in A1C. Events of severe hypoglycemia were rare for all agents; however, the insulins and insulin secretagogues were associated with a statistically significant increase in overall hypoglycemia relative to the other classes. Increased body weight was observed with the majority of second-line therapies, the exceptions being DPP-4 inhibitors, alpha-glucosidase inhibitors, and GLP-1 analogues.Further studies of adequate size and duration are required to assess comparative efficacy in durability of antihyperglycemic effect, long-term complications of diabetes, and quality of life.

The results of the updated cost-effectiveness analysis comparing second-line treatments for type 2 diabetes after inadequate control with metformin monotherapy were congruent with the results of the original analysis. Sulfonylureas added to metformin represented the most cost- effective second-line therapy, a finding that was robust in numerous sensitivity analyses. These results were primarily driven by the low cost of sulfonylureas relative to other drugs, marginal differences in glycemic control and long-term complications between sulfonylureas and other agents, and the expected low absolute risk of severe hypoglycemic episodes requiring health care resource use. GLP-1 analogues, which could not be considered in the original analysis, as no agents were approved in Canada at the time, were found to be associated with a high ICUR in the updated analysis. In order to surpass the sulfonylureas as the most cost-effective second-line therapy, reductions in cost of 90% or more would be required for this class and the DPP-4 inhibitors. Because of the lack of adequate clinical data, there was considerable uncertainty surrounding some of the key drivers in the economic analysis. These included the impact of insulin use and hypoglycemia on quality of life, and the incidence of severe hypoglycemia across various treatments.

# **1** CONTEXT AND POLICY ISSUES

# 1.1 Background

In August 2010, the Canadian Agency for Drugs and Technologies in Health (CADTH) published a systematic review and network meta-analysis (NMA) assessing the comparative safety and efficacy of all available classes of antihyperglycemic therapies added to metformin in patients with type 2 diabetes experiencing inadequate glycemic control on metformin monotherapy.<sup>1,4</sup> At the time, we identified 49 active and non-active randomized controlled trials (RCTs) that compared two or more of the following classes of antihyperglycemic agents (including weight-loss agents with glucose-lowering effects): sulfonylureas, meglitinides, thiazolidinediones (TZDs), dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) analogues, insulins, alpha-glucosidase inhibitors, sibutramine and orlistat. All classes of second-line antihyperglycemic therapies were found to achieve clinically meaningful reductions in glycated hemoglobin (A1C) (0.6% to 1.0%), and no significant differences were found between classes. Insulins and insulin secretagogues were associated with significantly more events of overall hypoglycemia than the other agents, but severe hypoglycemia was rarely observed. An increase in body weight was observed with the majority of second-line therapies (1.8 kg to 3.0 kg) — the exceptions being DPP-4 inhibitors, alpha-glucosidase inhibitors, and GLP-1 analogues (0.6 to -1.8 kg). There were insufficient data available for diabetes complications, mortality, or quality of life.

The results of the systematic review were used as inputs in a cost-effectiveness analysis of second-line treatments conducted using the UKPDS model. This analysis demonstrated that sulfonylureas, when added to metformin, were associated with the most favourable cost- effectiveness estimate, with an incremental cost of \$12,757 per quality-adjusted life-year gained, relative to continued metformin monotherapy.<sup>1,5</sup>

CERC deliberated on the clinical and cost-effectiveness evidence and recommended that, for most patients, a sulfonylurea should be added to metformin when metformin alone is not enough to adequately control hyperglycemia.<sup>2</sup>

# 1.2 Rationale for Updating the Review of Second-Line Pharmacotherapy

Although the original clinical review of second-line pharmacotherapy for type 2 diabetes included GLP-1 analogues, the cost-effectiveness analysis<sup>1</sup> and subsequent recommendations<sup>2</sup> could not address this class, as there were no agents approved for use in Canada at the time of the reviews. Two GLP-1 analogues, exenatide (Byetta) and liraglutide (Victoza), have since been approved. Hence, there is interest in updated optimal therapy recommendations for second-line therapy for type 2 diabetes that incorporate the GLP-1 analogues.

# **1.3** Description of Second-Line Agents for Type 2 Diabetes

Except for the introduction of GLP-1 analogues, the drug classes currently available in Canada for use as second-line therapy in patients with type 2 diabetes inadequately managed on metformin remain the same as in 2010: sulfonylureas, meglitinides, alpha-glucosidase inhibitors, TZDs, DPP-4 inhibitors, basal insulins, bolus insulins, and biphasic insulins (Table 1).

Since the original CADTH review of second-line pharmacotherapy, severe restrictions have been placed on the use of rosiglitazone in Canada. Specifically, rosiglitazone is now indicated as an adjunct to diet

and exercise to improve glycemic control in patients with type 2 diabetes mellitus for whom all other oral antidiabetic agents, in monotherapy or in combination, do not result in adequate glycemic control or are inappropriate due to contraindications or intolerance.<sup>6</sup> In addition, prior to prescribing rosiglitazone, physicians must:

- document the eligibility of patients to meet the above-mentioned criteria
- counsel each patient on the risks and benefits of rosiglitazone, including the cardiovascular risks
- obtain the patient's written informed consent.<sup>6</sup>

| Table 1: Drug Classes Available in Canada as Second-LineTreatments for Type 2 Diabetes after Metformin |                         |                      |          |      |                              |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------|------|------------------------------|--|--|
| Drug Class                                                                                             | Generic Name            | Dosage Inform        | nation   | RoA  | Approved for Use             |  |  |
|                                                                                                        |                         | Range DDD            |          |      | with Metformin               |  |  |
| Sulfonylureas                                                                                          | Gliclazide              | 80 mg to 320 mg      | 160 mg   | Oral | Not specified <sup>7,8</sup> |  |  |
|                                                                                                        | Gliclazide MR           | 30 mg to 120 mg      | 60 mg    | Oral | Not specified <sup>7,8</sup> |  |  |
|                                                                                                        | Glimepiride             | 1 mg to 8 mg         | 2 mg     | Oral | Yes <sup>9</sup>             |  |  |
|                                                                                                        | Glyburide               | 2.5 mg to 20 mg      | 10 mg    | Oral | Not specified <sup>10</sup>  |  |  |
|                                                                                                        | Chlorpropamide          | 100 mg to 500 mg     | 375 mg   | Oral | Not specified <sup>11</sup>  |  |  |
|                                                                                                        | Tolbutamide             | 500 mg to 3000<br>mg | 1,500 mg | Oral | Not specified <sup>12</sup>  |  |  |
| TZDs                                                                                                   | Pioglitazone            | 15 mg to 45 mg       | 30 mg    | Oral | Yes <sup>13</sup>            |  |  |
|                                                                                                        | Rosiglitazone           | 4 to 8 mg            | 6 mg     | Oral | Yes <sup>6</sup>             |  |  |
| Meglitinides                                                                                           | Nateglinide             | 180 mg to 360 mg     | 360 mg   | Oral | Yes <sup>14</sup>            |  |  |
|                                                                                                        | Repaglinide             | 0.5 mg to 16 mg      | 4 mg     | Oral | Yes <sup>15</sup>            |  |  |
| AGIs                                                                                                   | Acarbose                | 150 mg to 300 mg     | 300 mg   | Oral | Yes <sup>16</sup>            |  |  |
| DPP-4 inhibitors                                                                                       | Sitagliptin             | 100 mg               | 100 mg   | Oral | Yes <sup>17</sup>            |  |  |
|                                                                                                        | Saxagliptin             | 5 mg                 | 5 mg     | Oral | Yes <sup>18</sup>            |  |  |
|                                                                                                        | Linagliptin             | 5 mg                 | NR       | Oral | Yes <sup>19</sup>            |  |  |
| GLP-1 analogues                                                                                        | Exenatide               | 10 mg to 20 mcg      | 15 mcg   | SC   | Yes <sup>20</sup>            |  |  |
|                                                                                                        | Liraglutide             | 1.2 mg to 1.8 mg     | 1.2 mg   | SC   | Yes <sup>21</sup>            |  |  |
| Bolus insulin                                                                                          | Insulin aspart          | Individualized       | 40 U     | SC   | Not specified <sup>22</sup>  |  |  |
|                                                                                                        | Insulin lispro          | Individualized       | 40 U     | SC   | Not specified <sup>23</sup>  |  |  |
|                                                                                                        | Insulin glulisine       | Individualized       | 40 U     | SC   | Yes <sup>24</sup>            |  |  |
|                                                                                                        | Human insulin           | Individualized       | 40 U     | SC   | Not specified <sup>25</sup>  |  |  |
| Basal insulin                                                                                          | Insulin NPH             | Individualized       | 40 U     | SC   | Not specified <sup>25</sup>  |  |  |
|                                                                                                        | Insulin detemir         | Individualized       | 40 U     | SC   | Yes <sup>26</sup>            |  |  |
|                                                                                                        | Insulin glargine        | Individualized       | 40 U     | SC   | Not specified <sup>27</sup>  |  |  |
| <b>Biphasic insulins</b>                                                                               | Premixed regular NPH    | Individualized       | 40 U     | SC   | Not specified <sup>25</sup>  |  |  |
|                                                                                                        | Biphasic insulin aspart | Individualized       | 40 U     | SC   | Not specified <sup>28</sup>  |  |  |
|                                                                                                        | Biphasic insulin lispro | Individualized       | 40 U     | SC   | Not specified <sup>23</sup>  |  |  |

AGIs = alpha-glucosidase inhibitors; DDD = World Health Organization Defined Daily Dose; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptid-1; NPH = neutral protamine Hagedorn; NR = not reported; MR = modified release; RoA = route of administration; SC = subcutaneous; TZD = thiazolidinedione; U = units.

# 2 SYSTEMATIC REVIEW

### 2.1 Objective

The objective of this review was to update the original CADTH systematic review and network metaanalyses of second-line therapies for type 2 diabetes.

### 2.2 Methods

#### 2.2.1 Research Questions

- 1. What is the comparative efficacy and safety of second-line antidiabetes drugs in adults with type 2 diabetes experiencing inadequate glycemic control on metformin monotherapy?
- 2. What is the cost-effectiveness of second-line antidiabetes drugs in adults with type 2 diabetes experiencing inadequate glycemic control on metformin monotherapy?

#### 2.2.2 Literature Search

The literature search for this update was performed by an information specialist using a peer-reviewed search strategy — the search methodology was similar to that of the original reviews. A combined search was performed for both the second- and third-line therapy updates. Published literature was identified by searching the following bibliographic databases: MEDLINE with In-process records & daily updates via Ovid; Embase via Ovid; The Cochrane Library via Ovid; and PubMed. The search strategy was comprised of both controlled vocabulary, such as the National Library of Medicine's MeSH (Medical Subject Headings), and keywords. The main search concepts were diabetes, and second- and third-line antidiabetes drugs.

Methodological filters were applied to limit retrieval to health technology assessments, systematic reviews, meta-analyses, RCTs, and economic studies. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2009 (the end date of the search for the original review) and May 7, 2012. Conference abstracts were excluded from the search results. See Appendix 1 for the detailed search strategies. The initial search was completed on May 7, 2012. Regular alerts were established to update the search until the publication of the final report. Regular search updates were also performed on databases that do not provide alert services.

Grey literature (literature that is not commercially published) was identified by searching the Grey Matters checklist (<u>www.cadth.ca/resources/grey-matters</u>), which includes the websites of regulatory agencies, health technology assessment agencies, and professional associations. Google and other Internet search engines were used to search for additional web-based materials. These searches were supplemented by reviewing the bibliographies of key papers, and through contacts with appropriate experts and industry.

#### 2.2.3 Eligibility Criteria

The eligibility criteria for the updated review of second-line diabetes pharmacotherapy were the same as for the original review. Key criteria are summarized in Table 2. Further details on inclusion and exclusion criteria can be found in the original report.<sup>1</sup>

| Table 2: Key Eligibility Criteria for Updated Review of Second-Line Diabetes Pharmacotherapy |                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Study Design                                                                                 | Randomized controlled trials                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Population         Inadequately controlled* with metformin monotherapy                       |                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Interventions/<br>Comparators                                                                | Metformin plus any one of the following: placebo/no treatment, sulfonylurea, GLP-1<br>analogue, DPP-4 inhibitor, meglitinide, thiazolidinedione, alpha-glucosidase inhibitor, insulin<br>(basal, bolus, biphasic). Agents within each drug class were included in the review only if they<br>were approved for marketing in one or more of Canada, the United States, or the European<br>Union. |  |  |  |  |  |

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1.

\*Inadequate control was defined as A1C > 6.5% or fasting plasma glucose > 7 mmol/L or two-hour post-prandial glucose > 10 mmol/L.<sup>29,30</sup>

All of the agents listed in Table 1 were included in the updated review. In addition, certain agents not currently approved for sale in Canada were included in the review, as they belong to one of the drug classes listed in Table 1 and are approved in one or both of the United States or the European Union (Table 3).

| Table 3: Agents Not Approved in Canada Included in the Updated Systematic Review |              |                 |        |      |  |  |  |  |
|----------------------------------------------------------------------------------|--------------|-----------------|--------|------|--|--|--|--|
| Drug Class                                                                       | Generic Name | Dosage Info     | RoA    |      |  |  |  |  |
|                                                                                  |              |                 |        |      |  |  |  |  |
| Sulfonylureas                                                                    | Glipizide    | 5 mg to 40 mg   | 10 mg  | Oral |  |  |  |  |
| AGIs                                                                             | Miglitol     | 75 mg to 300 mg | 300 mg | Oral |  |  |  |  |
| DPP-4 inhibitors                                                                 | Vildagliptin | 100 mg          | 100 mg | Oral |  |  |  |  |
| Basal insulin                                                                    | Insulin NPL  | Individualized  | 40 U   | SC   |  |  |  |  |

AGIs = alpha-glucosidase inhibitors; DDD = World Health Organization Defined Daily Dose; DPP-4 = dipeptidyl peptidase-4; NPL = neutral protamine lispro; RoA = route of administration; SC = subcutaneous; U = units.

#### 2.2.4 Outcomes of Interest

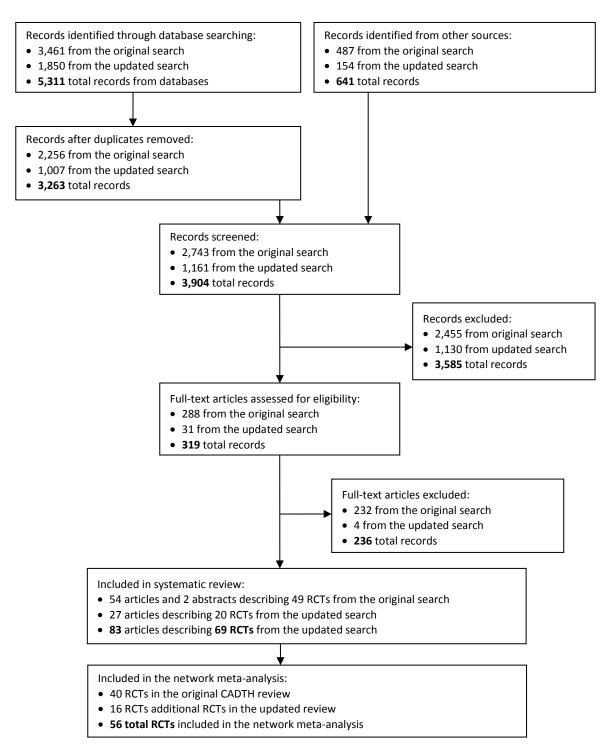
Compared with the original CADTH analysis, this update focused on outcomes that were primary considerations for CERC in developing the original recommendations. These include mortality, diabetes-related complications, A1C, body weight, hypoglycemia, and SAEs. Evidence for diabetes-related complications was only reviewed from RCTs that were designed and powered to compare the effect of two or more treatments on such end points.

#### 2.2.5 Literature Selection, Data Extraction, and Critical Appraisal

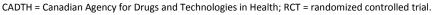
The systematic review was conducted using similar methodology to the original CADTH review.<sup>29,31</sup> Literature selection was performed independently by two reviewers. Data extraction and risk of bias assessment were performed by one reviewer, and verified by a second reviewer. Disagreements at any of these stages were resolved through consensus, or by a third reviewer if consensus could not be reached. Risk of bias for the included RCTs was assessed using the Scottish Intercollegiate Guidelines Network questionnaire (SIGN-50).<sup>32</sup>

#### 2.2.6 Statistical Analysis

The original NMAs for second-line therapy were updated with data from the newly-identified trials. The methodology employed was the same as that used in the original CADTH analysis.<sup>29,31</sup> WinBUGS<sup>33</sup> (MRC Biostatistics Unit, Cambridge, UK) was used for the network meta-analyses according to the routine developed at the Universities of Bristol and Leicester.<sup>34</sup> Metformin monotherapy (i.e., no second-line


therapy or addition of placebo to metformin) was the reference group for all network meta-analyses. Posterior densities for unknown parameters were estimated using Markov Chain Monte Carlo methods. Basic parameters were assigned non-informative or vague prior distributions. Point estimates and 95% credible intervals were used to summarize all findings. The probability of a drug class being optimal was estimated for each outcome based on the proportion of Markov Chain Monte Carlo simulations in which its relative measure of effect was best. We also calculated the mean rank for each drug class. Model diagnostics including trace plots and the Brooks-Gelman-Rubin statistic<sup>35</sup> were assessed to ensure model convergence. Two chains were fit into WinBUGS for each analysis, each employing  $\geq$  20,000 iterations, with a burn-in of  $\geq$  20,000 iterations.

Frequentist pairwise meta-analysis was performed using R, a language and software environment for statistical computing. A random-effects model was used for the reference case in all pairwise metaanalyses and NMAs. The robustness of the reference case was assessed using alternative modelling, sensitivity analyses, and meta-regressions.


# 2.3 Results

#### 2.3.1 Literature Selection

Compared with the original review, an additional 27 articles met eligibility criteria for inclusion in the update. These included 20 newly-identified RCTs and seven companion publications for studies that had been included in the 2010 review. Including the update, the systematic review of second-line pharmacotherapy included a total of 69 unique RCTs. A PRISMA diagram showing the results of the literature selection for the original and updated reviews is provided in Figure 1.



#### Figure 1: PRISMA Diagram for Literature Update



#### 2.3.2 Characteristics of Included Trials

In total (original review plus the update), evidence was available for the following eight drug classes added to metformin: sulfonylureas (28 RCTs), DPP-4 inhibitors (24 RCTs), TZDs (20 RCTs), GLP-1 analogues (14 RCTs), basal insulin (6 RCTs), alpha-glucosidase inhibitors (5 RCTs), meglitinides (4 RCTs), and biphasic insulin (four RCTs). Thirty-five RCTs included a metformin plus placebo group. There were no RCTs that investigated the use of bolus insulins. Detailed trial characteristics of the included studies are provided in Table 15. Sample sizes ranged from  $13^{36}$  to 2,789.<sup>37</sup> The threshold baseline A1C for inclusion in trials was typically in the range of 7.0% to 10%; however, a small number of studies employed a threshold as low as  $6.5\%^{36-48}$  or as high as  $11.5\%^{49}$  The mean baseline A1C of trial subjects ranged from 1.8 to 10.3 years (weighted mean [SD] = 8.0% [0.9]). The baseline duration of diabetes in the duration and dosage of metformin monotherapy prior to the addition of second-line drugs. The majority of studies were sponsored by the pharmaceutical industry.

Metformin monotherapy was not necessarily first-line therapy in most studies. The most common scenario in trials was that patients were treated with metformin monotherapy under routine clinical care and were required to have abstained from use of other antidiabetes drugs for a certain period (usually the past three months) before screening. However, treatment history prior to this period was unspecified. In the second scenario, patients using a variety of oral antidiabetes drugs underwent a run-in period with metformin monotherapy upon trial entry, and were randomized to add-on therapy if glycemic control was inadequate at the end of the run-in period. No studies assessed the effects of switching from metformin to another antidiabetes drug due to intolerable adverse effects, development of contraindications, or inadequate glycemic control.

### 2.3.3 Critical Appraisal

#### a) Internal Validity

The strengths and limitations of the newly-identified RCTs were generally consistent with the studies included in the original systematic review.<sup>1</sup> Common limitations included failure to adequately report methods for allocation concealment, open-label design, or failure to report a true intention-to-treat analysis (i.e., an analysis including all randomized patients). Study level results of internal validity assessment are reported in Appendix 9, Table 20.

#### b) External Validity

Limitations that may affect the external validity of the newly-identified RCTs were also similar to those reported in the original CADTH review.<sup>1</sup> Common limitations included a relatively short duration of follow-up (e.g., less than one year), limited sample sizes, the use of surrogate end points (e.g., A1C) versus more clinically meaningful end points (e.g., diabetes-related complications), and failure to report definitions for hypoglycemia. The population of interest for this review (as for the original review) was patients inadequately controlled with metformin monotherapy requiring a second-line agent to maintain glycemic control. However, there were several common limitations with the conduct and reporting of the included RCTs that may limit the generalizability of the study population to the population of interest. Studies often provided limited information regarding the dosage and duration of metformin monotherapy prior to randomization or included patients who had been using a stable metformin dosage for less than three months. Several RCTs also specified an A1C threshold of 6.5% for defining inadequate control, which is lower than the threshold commonly used in Canadian practice (7.0%). Hence, it is possible that study populations in the included RCTs may differ from patients in routine clinical practice who have failed to maintain glycemic control despite a maximum tolerated

dosage of metformin. In addition, many studies were conducted exclusively in countries where health care delivery and practice patterns may differ markedly from Canada.

Based on the inclusion criteria (Table 2), the review included RCTs that investigated four treatments that are not currently approved for use in Canada (once weekly exenatide, vildagliptin, miglitol, and glipizide). Sensitivity analyses were performed by removing these studies from the NMA. Study level details regarding the external validity assessment are reported in Appendix 9, Table 21.

#### 2.3.4 Data Synthesis

NMA and pairwise meta-analyses were conducted for A1C, body weight, and overall hypoglycemia. Evidence network diagrams for these outcomes are shown in Figure 2. In the case of severe hypoglycemia and SAEs, NMA could not be conducted because of the low event rates observed in many studies. Only pairwise direct comparisons were conducted for these outcomes. Data from several RCTs could not be included in any of the network or pairwise meta-analyses due to variation in the methods of reporting for key outcomes or because the study compared two treatments within the same drug class. The results of these studies are summarized in Appendix 8.

| Table 4: Overview of Evidence and Analyses Performed |                   |                       |                            |  |  |  |  |  |
|------------------------------------------------------|-------------------|-----------------------|----------------------------|--|--|--|--|--|
| Outcome                                              | Number of<br>RCTs | Number of<br>Patients | Type of Analyses Conducted |  |  |  |  |  |
| A1C                                                  | 56                | 27,773                | NMA and pairwise           |  |  |  |  |  |
| Body weight                                          | 36                | 20,178                | NMA and pairwise           |  |  |  |  |  |
| Overall hypoglycemia                                 | 48                | 24,284                | NMA and pairwise           |  |  |  |  |  |
| Severe hypoglycemia                                  | 30                | 14,196                | Pairwise                   |  |  |  |  |  |
| Serious adverse events                               | 39                | 21,476                | Pairwise                   |  |  |  |  |  |

A1C = glycated hemoglobin; NMA = network meta-analysis; RCT = randomized controlled trial.



Figure 2: Evidence Networks for Meta-Analyses of A1C (A), Body Weight (B), Overall Hypoglycemia (C)

A1C = glycated hemoglobin; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; TZD = thiazolidinedione. Network diagrams showing the distribution of evidence for each NMA.

Note: Numbers denote number of randomized controlled trials (RCTs) reporting the comparison. (A) 56 RCTs reported change from baseline in A1C. (B) 35 RCTs reported change from baseline in body weight. (C) 46 RCTs reported the numbers of patients experiencing at least one event of overall hypoglycemia. All active treatments and placebo were provided in combination with metformin.

### 2.3.5 Efficacy Results

#### a) Diabetes-Related Complications

There were no adequately powered RCTs identified in the literature update that evaluated the comparative efficacy of any class of second-line pharmacotherapy for reducing clinically important long-term complications of diabetes, or mortality. Only a single trial in the original CADTH review (the Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycemia in Diabetes [RECORD] trial) specified macrovascular complications as the primary outcome of interest.<sup>52</sup> This large RCT involved patients inadequately controlled on metformin (N = 2,228) or sulfonylurea (N = 2,230) monotherapy. However, data were not presented for the subgroup of subjects inadequately controlled on metformin monotherapy for most outcomes.

#### b) A1C

An additional 16 RCTs were included in the updated NMA for A1C, for a total of 56 RCTs (N = 27,773).<sup>36-38,40-42,44,45,47,48,51-96</sup> In general, results from the updated analysis were similar to those of the original; all classes of second-line agents added to metformin significantly reduced A1C relative to metformin alone

(Figure 3A). The effect estimates ranged from -0.64% (95% CrI: -0.92 to -0.38) for meglitinides to -1.04% (95% CrI: -1.30 to -0.78) for biphasic insulins. There was good agreement between direct pairwise estimates (where available) and NMA estimates Appendix 3. For GLP-1 analogues, the revised estimate of effect against metformin alone was -0.95%, slightly larger than the original estimate of -0.82%. For DPP-4 inhibitors, the revised estimate diminished somewhat from -0.80% in the original analysis to 0.69%.

The reference case analysis was conducted using a random-effects model; these results were also compared against those obtained using a fixed-effects model and found to be nearly identical. The deviance information criterion for the fixed-effects model (44.5) was greater than that of the random-effects model (-26.3) suggesting that the random-effects model was a better-fitting model. Model parameters indicated good model fit for the reference case (e.g., the mean residual deviance was less than the number of unconstrained data points). Details regarding the model-fit parameters for all NMAs are provided in Appendix 7.

The robustness of the reference case was assessed using alternative modelling, sensitivity analyses, and meta-regressions (Table 5). Results of the NMA were similar when analyzed using random and fixed effects. Sensitivity analyses were conducted to assess the impact of removing studies with the following characteristics: investigated the use of rosiglitazone; involved an agent without Health Canada approval for marketing in Canada (i.e., agents listed previously in Table 3); RCTs that were less than one year in duration, or any studies where subgroup data were used. An additional sensitivity analysis was conducted using only studies that were six months in duration (i.e., 24 to 26 weeks). All of these sensitivity analyses demonstrated results that were similar to the reference case. Meta-regressions adjusting for baseline A1C and duration of diabetes at baseline also demonstrated results that were similar to the reference case.

An additional NMA was conducted where each of the drug classes were separated into their respective individual agents. All individual agents produced statistically significant reductions in A1C relative to placebo, with no apparent differences within classes (Appendix 4, Figure 5).

#### 2.3.6 Safety Results

#### a) Body Weight

Compared with the original analysis, an additional six RCTs were included in the NMA for changes from baseline body weight, for a total of 36 RCTs (N = 20,178).  $^{37,38,40,42,44,45,47,48,51-57,59,60,62,64,65,67,68,70-73,75,77,79,81-86,92}$ 

<sup>86,92</sup> Results from the updated analysis were similar to those reported in the original review (Figure 3B). Treatment with metformin plus sulfonylureas, meglitinides, TZDs, and biphasic insulin resulted in significantly greater increases in body weight than metformin monotherapy (range 1.7 kg to 3.1 kg), with no significant differences between these classes. DPP-4 inhibitors and alpha-glucosidase inhibitors did not significantly affect body weight. The only drug class associated with a statistically significant reduction in body weight versus metformin monotherapy was GLP-1 analogues (–1.8 kg, 95% CrI: –2.9 to –0.8). There was good agreement between direct pairwise estimates (where available) and NMA estimates (Appendix 3). The mean residual deviance for the NMA was less than the number of unconstrained data points, indicating good model fit (Appendix 7).

#### b) Hypoglycemia

#### **Overall Hypoglycemia**

There was a degree of variability in the clinical definitions of this outcome across RCTs. The most common differences were the specific blood glucose threshold for hypoglycemia (range  $\leq$  2.8 to  $\leq$  3.9 mmol/L), and whether or not patients were required to validate symptoms of hypoglycemia with self-monitoring of blood glucose.

An additional 13 RCTs were included in the NMA for overall hypoglycemia, for a total of 48 RCTs (N = 24,284).<sup>36-42,44,45,47,51-65,67-73,77-79,81-86,89,90,92-96</sup> Results from the updated meta-analysis were similar to those reported in the original review (Figure 3C). Relative to metformin monotherapy, risk was significantly elevated with insulins, sulfonylureas, and meglitinides (odds ratios [ORs] were 4.1 to 7.0 for insulins, 7.5 for sulfonylureas, and 8.3 for meglitinides). There were no significant differences between these classes. By contrast, there was no significant increase in hypoglycemia risk with TZDs, alpha-glucosidase inhibitors, DPP-4 inhibitors, or GLP-1 analogues. There was good agreement between direct pairwise estimates and NMA estimates (Appendix 3). The mean residual deviance for the NMA was less than the number of unconstrained data points, indicating good model fit (Appendix 7).

#### Figure 3: CADTH 2010 (●) and Updated Network Meta-Analyses (○) for A1C (%) (A), Weight (kg) (B), and Overall Hypoglycemia (C)

| 1 | Δ |
|---|---|
|   |   |

| Treatment added-   | NMA Estimate (95% Crl) |                      | <b>F F</b> _       | Favours |  |
|--------------------|------------------------|----------------------|--------------------|---------|--|
| on to metformin    | CADTH 2010             | CADTH 2012           |                    | acebo   |  |
| Sulfonylureas      | -0.79 (-0.95, -0.63)   | -0.79 (-0.91, -0.67) |                    |         |  |
| Meglitinides       | -0.64 (-0.93, -0.37)   | -0.64 (-0.91, -0.38) | <u>⊧</u>           |         |  |
| Thiazolidinediones | -0.82 (-1.00, -0.66)   | -0.77 (-0.92, -0.63) | <b>⊨</b>           |         |  |
| DPP-4 inhibitors   | -0.80 (-0.95, -0.65)   | -0.69 (-0.79, -0.60) | <b>⊢_∳</b> -∽₋₊    |         |  |
| AG inhibitors      | -0.74 (-0.98, -0.50)   | -0.74 (-0.98, -0.51) | <u></u>            |         |  |
| GLP-1 analogues    | -0.82 (-1.05, -0.59)   | -0.96 (-1.13, -0.80) | <u>+</u> <b>++</b> |         |  |
| Basal insulin      | -0.82 (-1.16, -0.47)   | -0.91 (-1.16, -0.67) | <b>∳</b> ∮         |         |  |
| Biphasic insulin   | -0.97 (-1.33, -0.61)   | –1.06 (–1.32, –0.80) | * <u>+</u>         |         |  |
|                    |                        |                      |                    |         |  |

### В

С

-1.8 -1.5 -1.3 -1.0 -0.8 -0.5 -0.3 0.0 0.3 Difference in ∆ A1C from BL (95% Crl)

| Treatment added-   | NMA Estimate (95% Crl) |                   | – Favours Favours     |
|--------------------|------------------------|-------------------|-----------------------|
| on to metformin    | CADTH 2010             | CADTH 2012        | Treatment Placebo     |
| Sulfonylureas      | 2.0 (1.1, 2.9)         | 2.1 (1.3, 2.9)    | <b>↓</b> ₹!           |
| Meglitinides       | 1.8 (0.4, 3.3)         | 1.8 (0.5, 3.1)    | <b>└────</b> 81       |
| Thiazolidinediones | 2.6 (1.7, 3.5)         | 2.7 (1.9, 3.5)    | <b>⊢€1</b>            |
| DPP-4 inhibitors   | 0.6 (–0.5, 1.6)        | 0.3 (–0.4, 1.1)   | ₽ <mark>⊢</mark> 4    |
| AG inhibitors      | -0.9 (-2.4, 0.5)       | -0.9 (-2.2, 0.4)  | <u>⊧</u> \$           |
| GLP-1 analogues    | -1.8 (-3.4, -0.1)      | –1.8 (–2.9, –0.8) | F                     |
| Basal insulin      | 1.6 (–0.5, 3.6)        | 1.7 (0.3, 3.1)    | F                     |
| Biphasic insulin   | 3.0 (1.0, 5.0)         | 3.1 (1.5, 4.7)    | * <u>+</u>            |
|                    |                        |                   | -5.0 -2.5 0.0 2.5 5.0 |

-5.0 -2.5 0.0 2.5 5.0 Difference in ∆ weight from BL (95% Crl)

| Treatment added-on | NMA Estim           | nate (95% Crl)     | - More with More with                         |
|--------------------|---------------------|--------------------|-----------------------------------------------|
| to metformin       | CADTH 2010          | CADTH 2012         | Placebo Treatment                             |
| Sulfonylureas      | 8.22 (4.50, 16.63)  | 7.51 (4.39, 13.66) | <b>⊨_8</b> 1                                  |
| Meglitinides       | 8.59 (3.34, 25.20)  | 8.30 (3.25, 23.44) | <u>+</u> !                                    |
| Thiazolidinediones | 1.10 (0.54, 2.27)   | 0.93 (0.48, 1.78)  | <u>⊢</u> 4                                    |
| DPP-4 inhibitors   | 1.05 (0.56, 2.21)   | 0.93 (0.56, 1.62)  | ⊨_ <mark>=</mark> 1                           |
| AG inhibitors      | 0.39 (0.01, 6.67)   | 0.39 (0.01, 6.59)  | <u>⊧</u> €!                                   |
| GLP-1 analogues    | 1.12 (0.33, 3.90)   | 1.05 (0.49, 2.30)  | F                                             |
| Basal insulin      | 5.20 (1.48, 21.46)  | 4.11 (1.68, 10.73) | I <mark>⊨</mark>                              |
| Biphasic insulin   | 11.02 (3.48, 40.43) | 6.99 (2.83, 18.14) | <u></u>                                       |
|                    |                     |                    | 0.0 0.1 1.0 10.0 100.0<br>Median OR (95% Crl) |

 $\Delta$  = change; A1C = glycated hemoglobin; AG = alpha-glucosidase; BL = baseline; Crl = credible interval; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; NMA = network meta-analysis; OR = odds ratio. Note: Forest plots comparing the results of the original ( $\bullet$ ) and updated (O) CADTH network meta-analyses for change from baseline in A1C (A), change from baseline in body weight (B), and overall hypoglycemia (C).

|                                                                   | <b>Table 5:</b> Sensitivity Analyses for Change from Baseline A1C (%) — NMA Estimates vs. Placebo <sup>a</sup> |                         |                         |                         |                         |                                  |                         |                          |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------------|-------------------------|--------------------------|
| Analysis                                                          | Sulfonylureas                                                                                                  | Meglitinides            | TZDs                    | DPP-4 Inhibitors        | AGIs                    | GLP-1<br>Analogues               | Basal Insulin           | Biphasic Insulin         |
| Reference case                                                    | -0.79<br>(-0.91, -0.67)                                                                                        | -0.64<br>(-0.91, -0.38) | -0.77<br>(-0.92, -0.63) | -0.69<br>(-0.79, -0.60) | -0.74<br>(-0.98, -0.51) | -0.96<br>(-1.13, -0.80)          | -0.91<br>(-1.16, -0.67) | -1.06<br>(-1.32, -0.80)  |
| Modelling assumption                                              | ( 0.02) 0.07                                                                                                   | ( 0.02) 0.00            | ( 0.02) 0.00)           | ( 0.15) 0.00)           | ( 0.00) 0.01            | ( 1120) 0100)                    | ( 1120) 0101 /          | ( 1.02) 0.00)            |
| Fixed effects (instead of random effects)                         | -0.74<br>(-0.80, -0.68)                                                                                        | -0.59<br>(-0.77, -0.41) | -0.65<br>(-0.72, -0.58) | -0.67<br>(-0.72, -0.61) | -0.73<br>(-0.92, -0.54) | -0.92<br>(-1.02, -0.82)          | -0.83<br>(-0.98, -0.68) | -1.01<br>(-1.16, -0.86)  |
| Meta-regressions adjustin                                         | g for:                                                                                                         |                         |                         |                         |                         |                                  |                         |                          |
| Baseline hemoglobin A1C                                           | -0.80<br>(-0.92, -0.69)                                                                                        | -0.63<br>(-0.90, -0.36) | -0.78<br>(-0.92, -0.64) | -0.71<br>(-0.81, -0.61) | -0.74<br>(-0.98, -0.51) | -0.98<br>(-1.14 <i>,</i> -0.82)  | -0.96<br>(-1.21, -0.71) | -1.05<br>(-1.31, -0.80)  |
| Baseline duration of diabetes                                     | -0.82<br>(-0.94, -0.70)                                                                                        | -0.65<br>(-0.91, -0.39) | -0.76<br>(-0.90, -0.63) | -0.72<br>(-0.82, -0.62) | -0.69<br>(-0.93, -0.46) | -1.00<br>(-1.16, -0.83)          | -1.00<br>(-1.26, -0.75) | -1.02<br>(-1.27, -0.77)  |
| Duration of RCT                                                   | -0.78<br>(-0.90, -0.67)                                                                                        | -0.63<br>(-0.89, -0.38) | -0.71<br>(-0.86, -0.58) | –0.68<br>(–0.77, –0.59) | -0.74<br>(-0.97, -0.51) | -0.95<br>(-1.10, -0.80)          | -0.91<br>(-1.14, -0.68) | -1.05<br>(-1.29, -0.81)  |
| Sensitivity analyses with re                                      | emoval of:                                                                                                     |                         |                         |                         |                         |                                  |                         |                          |
| RCTs of rosiglitazone                                             | –0.78<br>(–0.89, –0.67)                                                                                        | –0.63<br>(–0.88, –0.39) | -0.72<br>(-0.87, -0.58) | –0.69<br>(–0.78, –0.60) | -0.74<br>(-0.96, -0.52) | -0.95<br>(-1.10, -0.80)          | -0.90<br>(-1.13, -0.68) | -1.04<br>(-1.28, -0.81)  |
| RCTs of agents without a NOC                                      | -0.81<br>(-0.95, -0.68)                                                                                        | -0.65<br>(-0.92, -0.39) | -0.83<br>(-0.99, -0.67) | -0.65<br>(-0.76, -0.53) | -0.85<br>(-1.12, -0.58) | -0.97<br>(-1.13, -0.80)          | -0.91<br>(-1.16, -0.67) | -1.06<br>(-1.33, -0.81)  |
| RCTs < 1 year in<br>duration                                      | -0.87<br>(-1.18, -0.56)                                                                                        | -0.74<br>(-1.24, -0.23) | -1.00<br>(-1.35, -0.63) | -0.81<br>(-1.11, -0.50) | -0.80<br>(-1.43, -0.16) |                                  |                         |                          |
| RCTs from which<br>subgroup data were<br>used                     | -0.85<br>(-0.97, -0.73)                                                                                        | -0.66<br>(-0.92, -0.41) | -0.73<br>(-0.89, -0.59) | -0.70<br>(-0.80, -0.61) | -0.73<br>(-0.97, -0.49) | -1.04<br>(-1.21, -0.88)          | -0.96<br>(-1.21, -0.71) | -1.12 (-1.37, -<br>0.87) |
| RCTs of duration other<br>than 6 months (i.e., 24<br>to 26 weeks) | -1.06<br>(-1.40, -0.72)                                                                                        | -0.70<br>(-1.07, -0.34) | -0.95<br>(-1.28, -0.64) | -0.69<br>(-0.84, -0.54) | -0.86<br>(-1.18, -0.53) | -1.29<br>(-1.63 <i>, -</i> 0.97) | -1.15<br>(-1.59, -0.72) | -1.44<br>(-1.96, -0.92)  |

A1C = glycated hemoglobin; AGIs = alpha-glucosidase inhibitors; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; NMA = network meta-analysis; NOC = Notice of Compliance;

RCTs = randomized controlled trials; TZDs = thiazolidinediones; vs. = versus.

<sup>a</sup>All active treatments and placebo were provided in combination with metformin.

#### Severe Hypoglycemia

Severe hypoglycemia was typically defined as an event requiring third-party assistance. A total of 30 RCTs  $(N = 14,196)^{37,40,42-44,51,53,55,56,58-60,62-65,67,68,70-73,77,83-85,92,94,97,98}$  were identified that reported the number of patients with at least one episode of severe hypoglycemia (24 in the original review and six in the updated review). Events of severe hypoglycemia were rare for all drug classes including the insulins and insulin secretagogues (i.e., meglitinides and sulfonylureas). Results from NMA are not reported for this outcome, as the rarity of events prevented model convergence. Pairwise comparisons are summarized in Table 6; however, given the very low occurrence of severe hypoglycemia across all trials and the consequent limitations in study power, the interpretability of these results is limited. Detailed results for severe hypoglycemia are reported in Table 16, Appendix 5.

| Table 6: Summary of Findings for Severe Hypoglycemia |                                                   |                                |                    |  |  |  |
|------------------------------------------------------|---------------------------------------------------|--------------------------------|--------------------|--|--|--|
| Comparison <sup>a</sup>                              | No. of Trials/Total N                             | OR (95% CI)                    | l <sup>2</sup> (%) |  |  |  |
| Placebo Comparisons                                  |                                                   |                                |                    |  |  |  |
| Sulfonylurea vs. placebo                             | 4 RCTs <sup>59,70,73,89</sup> (N = 637)           | 2.24 (0.34,14.9)               | 0%                 |  |  |  |
| Meglitinide vs. placebo                              | 2 RCTs <sup>71,72</sup> (N = 366)                 | No events                      | -                  |  |  |  |
| TZD vs. placebo                                      | 3 RCTs <sup>51,62,63</sup> (N = 627)              | No events                      | _                  |  |  |  |
| DPP-4 inhibitor vs. placebo                          | 7 RCTs <sup>56,58,65,89,90,93,96</sup> (N = 2960) | No events                      | -                  |  |  |  |
| AGI vs. placebo                                      | 1 RCT <sup>84</sup> (N = 153)                     | No events                      | -                  |  |  |  |
| GLP-1 vs. placebo                                    | 3 RCTs <sup>73,84,97</sup> (N = 389)              | 0.33 (0.01, 8.40)*             |                    |  |  |  |
| Active Comparisons                                   |                                                   |                                |                    |  |  |  |
| Sulfonylurea vs. TZD                                 | 4 RCTs <sup>64,83,96,98</sup> (N = 1439)          | No events                      | _                  |  |  |  |
| Sulfonylurea vs. DPP-4 inhibitor                     | 5 RCTs <sup>37,42,44,89,94</sup> (N = 5794)       | 12.22 (3.34, 44.7)             | 0%                 |  |  |  |
| Sulfonylurea vs. biphasic insulin                    | $1 \text{ RCT}^{68} (N = 222)$                    | No events                      | _                  |  |  |  |
| DPP-4 inhibitor vs. TZD                              | 1 RCT <sup>55</sup> (N = 575)                     | No events                      | -                  |  |  |  |
| DPP-4 inhibitor vs. basal insulin                    | $1 \text{ RCT}^{85} (N = 501)$                    | No events                      | _                  |  |  |  |
| GLP-1 analogue vs. DPP-4 inhibitor                   | 2 RCTs <sup>86,92</sup> (N = 766)                 | No events                      | _                  |  |  |  |
| GLP-1 analogue vs. TZD                               | 1 RCT <sup>86</sup> (N = 325)                     | No events                      | _                  |  |  |  |
| GLP-1 analogue vs. basal insulin                     | 2 RCTs <sup>40,53</sup> (N = 145)                 | 0.32 (0.01, 8.22) <sup>†</sup> |                    |  |  |  |
| GLP-1 analogue vs. biphasic insulin                  | $1 \text{ RCT}^{41} (N = 354)$                    | No events                      | _                  |  |  |  |
| Biphasic insulin vs. basal insulin                   | 2 RCTs <sup>67,77</sup> (N = 297)                 | No events                      | _                  |  |  |  |

AGI = alpha-glucosidase inhibitor; CI=confidence interval; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; OR = odds ratio; RCT = randomized controlled trial; TZD = thiazolidinediones, vs. = versus.

<sup>a</sup>All active treatments and placebo were provided in combination with metformin.

#### c) Serious Adverse Events

Thirty-nine RCTs  $(N = 21,476)^{37,38,42-48,51,54-56,58,61,63,65,69,75,77-79,82-87,89-93,95,96,98-101}$  for second-line pharmacotherapy were identified that reported total SAEs. The number of patients who experienced at least one SAE in the 4- to 12-week studies was generally low, ranging from 0.7% to 9.1% of the patient population. Exceptions to this were reported in two longer-term extension studies,<sup>42,43</sup> where 13% to 21% of the patient population experienced an SAE. Events of severe pancreatitis were rare. No statistical tests were conducted due to limited statistical power. Detailed results for SAEs are reported in Table 17, Appendix 6.

# **3 PHARMACOECONOMIC ANALYSIS**

# 3.1 Objective

To update the 2010 CADTH pharmacoeconomic analysis of second-line therapies for type 2 diabetes to incorporate all agents currently approved in Canada, based on the results of the updated systematic review and NMAs.

# 3.2 Methods

#### 3.2.1 Type of Economic Evaluation

Cost-utility analyses comparing alternative second-line therapies in adults with type 2 diabetes experiencing inadequate glycemic control with metformin monotherapy.

#### 3.2.2 Target Population

Adults with type 2 diabetes inadequately controlled with metformin monotherapy. When available, characteristics of simulated patients were derived from RCTs included in the systematic review and NMA.

#### 3.2.3 Treatments

All classes of second-line antidiabetes drugs currently approved in Canada were assessed: sulfonylureas, meglitinides, TZDs, GLP-1 analogues, DPP-4 inhibitors, insulins (bolus, biphasic, basal), and alpha-glucosidase inhibitors.

#### 3.2.4 Perspective

The analysis was conducted from the perspective of a provincial health Ministry.

#### 3.2.5 Efficacy and Safety

Treatment effects (A1C, overall hypoglycemia, weight) for the analysis were derived from the updated systematic review investigating the use of second-line antidiabetic agents in patients inadequately controlled on metformin monotherapy. Where possible, estimates of efficacy for the economic analysis were obtained from the NMA of these RCTs.

Most RCTs included in the meta-analysis were unlikely to have had adequate sample size or been of sufficient duration to capture incidence rates of infrequent events that may be of economic importance. These include:

- severe hypoglycemia in patients using insulin secretagogues or insulin
- congestive heart failure (CHF) in patients using TZDs.

Rather than pool results from smaller RCTs, event rates and treatment effects for these events were derived from large observational studies and randomized controlled trials. The baseline rates of severe hypoglycemia among patients using metformin (60 per 100,000 patients years), as well as the increased risk among patients using metformin plus sulfonylureas (OR, 4.04 [95% CI, 3.27 to 4.98]) and metformin plus sulfonylureas plus insulin (OR, 8.86 [95% CI, 4.47 to 17.6]), were derived from a population-based study by Bodmer et al.<sup>50</sup> Sensitivity analyses for this parameter were conducted using the higher rates of severe hypoglycemia reported in a study by Leese et al.<sup>102</sup> The increased risk of severe hypoglycemia in patients using insulin was included in the reference case economic analysis.

An increased risk of CHF in patients using TZDs (HR, 2.10 [95% CI, 1.35 to 3.27])<sup>52</sup> was incorporated in a sensitivity analysis. As there is no direct means for doing so in the UKPDS Outcomes Model, CHF risk was increased by augmenting body weight by 30 kg in patients using TZDs. CHF is the only sub-model influenced by body mass index (BMI); therefore, the increase in BMI did not affect any other outcomes.<sup>3</sup> However, a sensitivity analysis incorporating a disutility associated with weight gain would have been impacted by the augmented body weight of TZD-treated patients.

Other class-specific adverse effects were modelled in sensitivity analyses in a similar manner as in the original analysis, including gastrointestinal effects of alpha-glucosidase inhibitors, and fracture risk with TZDs.

#### 3.2.6 Time Horizon

A 40-year time horizon was used for the reference case analysis.

#### 3.2.7 Modelling

The latest version of the UKPDS Outcomes Model (version 1.3) was used to forecast long-term diabetesrelated complications and cost consequences for each treatment class. The UKPDS Outcomes Model is a computer simulation model developed by the University of Oxford Diabetes Trials Unit for estimating the long-term impact of health interventions for people with type 2 diabetes over an extrapolated lifetime. It is based on patient data from the UKPDS and uses a wide variety of input data, including knowledge of previous events for individuals, and has the ability to take into account changes in some risk factor levels (such as blood glucose level, blood pressure, lipid levels, and smoking status) over time. The UKPDS has been well-validated through comparison of its predictions, with results reported in published clinical and epidemiological studies.<sup>103</sup>

The UKPDS Outcomes Model (version 1.3) had been revised from the version of the UKPDS Outcomes Model used in the original CADTH reports on second- and third-line treatments.<sup>1,30</sup> Updates include changes in modelling of smoking status and new features such as output of event rate and long-term history rate instead of cumulative event rate, as well as separation of diabetes-related death from other death.

### 3.2.8 Costs

#### a) Cost of Treatments

Unit costs for drugs were obtained from the Ontario Public Drug Programs (November 2012), when available. Otherwise, prices were obtained from other public drug programs (Quebec and British Columbia) in Canada. For the reference case analysis, the price of the lowest cost alternative was applied for each drug class (i.e., price of generic glyburide for sulfonylureas, generic pioglitazone for TZDs, insulin NPH for basal insulin, biphasic human insulin for biphasic insulin, generic repaglinide for meglitinides, linagliptin for DPP-4 inhibitors, exenatide for GLP-1 analogues, generic acarbose for alpha-glucosidase inhibitors) plus a 10% markup and a \$7.00 pharmacy fee per 90-day supply. With the exception of metformin for which we assumed the use of maximal doses (2,000 mg per day), it was assumed that patients used the average defined daily dose from the World Health Organization for each treatment.<sup>104</sup> The doses for insulin products (0.53 U/kg, 0.75 U/kg, 1.2 U/kg, and 1.5 U/kg for long-acting insulin analogues, insulin NPH, biphasic insulin analogues, and biphasic human insulin, respectively) were obtained from a convenience sample of patients with type 2 diabetes in British Columbia (Dr. Marshall Dahl, unpublished data, 2008).

Patients using certain antidiabetes agents (i.e., insulin secretagogues, insulin) typically use more blood glucose test strips than those using other agents. For the reference case analysis, the average daily utilization of blood glucose test strips for each drug class was derived from a recent utilization study in Ontario (Table 7).<sup>105</sup> A cost of \$0.729 per test strip (as listed in the Ontario Public Drug Programs) plus a pharmacy fee of \$7.00 per 100 test strips was applied. No markup was applied, as test strips are not eligible for markup in the Ontario Public Drug Programs. A sensitivity analysis was conducted, where the additional cost of test strips was not considered.

| <b>Table 7:</b> Mean Daily Utilization of Blood Glucose Test Strips in 2008 by Seniors in the Ontario Public Drug Programs, by Type of Pharmacotherapy <sup>a</sup> |      |      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--|--|--|--|
| Therapy Daily Use Standard Deviation                                                                                                                                |      |      |  |  |  |  |
| Insulin                                                                                                                                                             | 2.08 | 1.71 |  |  |  |  |
| Hypoglycemia-inducing oral glucose-lowering drugs                                                                                                                   | 1.16 | 0.94 |  |  |  |  |
| Non-hypoglycemia-inducing oral glucose-lowering drugs                                                                                                               | 0.94 | 1.19 |  |  |  |  |

<sup>a</sup>Gomes et al.<sup>105</sup>

A significant change from the previous analysis was the reduction in cost of generic pioglitazone by approximately 48% (down from \$2.20 to \$1.14 per 30 mg tablet). This resulted in the cost of generic pioglitazone being less than that of insulin NPH, in contrast to the original analysis. The older generation sulfonylurea, glyburide, remained the treatment with the lowest daily cost among active treatments, even after the additional cost of blood glucose test strips was applied (Table 8). Generic pioglitazone, DPP-4 inhibitors, and insulin NPH were less expensive than long-acting insulin analogues, biphasic human insulin, and GLP-1 analogues.

#### b) Costs Due to Long-Term Diabetes Complications

Resource utilization and costs associated with managing long-term diabetes-related complications were obtained from the Ontario Ministry of Health and Long-term Care (2006) (Table 9)<sup>106</sup> In-patient, outpatient, emergency room visits, prescription drug claims, long-term care, and home care costs for managing diabetes-related complications were included in the model. Costs were inflated to 2012 Canadian dollars using the Health Component of the Canadian Consumer Price Index. The average annual cost for patients without diabetes-related complications who were using metformin was \$1,931, while those using second-line therapies had an annual cost of \$1,931 plus the additional cost of second-line therapy and blood glucose test strips.

| Table 8: Average Daily Cost of Treatments With and Without the Cost of Blood Glucose Test Strips |                                                         |                                                          |                                          |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------|--|--|
| Treatment                                                                                        | Assumed Doses                                           | Daily Treatment Cost<br>Without Test Strips <sup>a</sup> | Daily Treatment<br>Cost With Test Strips |  |  |
| Alpha-glucosidase inhibitors                                                                     | Acarbose 300 mg daily                                   | \$1.28                                                   | \$2.04                                   |  |  |
| DPP-4 inhibitors                                                                                 | Linagliptin 5 mg daily                                  | \$2.88                                                   | \$3.63                                   |  |  |
| GLP-1 analogues                                                                                  | Exenatide 20 mcg daily                                  | \$5.13                                                   | \$5.88                                   |  |  |
| Sulfonylureas                                                                                    | Glyburide 10 mg daily                                   | \$0.20                                                   | \$1.13                                   |  |  |
| TZDs <sup>b</sup>                                                                                | Pioglitazone 30 mg daily                                | \$1.33                                                   | \$2.08                                   |  |  |
| Meglitinides                                                                                     | Repaglinide 4 mg daily                                  | \$0.32                                                   | \$1.25                                   |  |  |
| Basal human insulin                                                                              | Insulin NPH 0.75 U<br>per kg per day <sup>c</sup>       | \$1.93                                                   | \$3.60                                   |  |  |
| Long-acting insulin analogues                                                                    | Insulin glargine 0.53 U per<br>kg per day <sup>c</sup>  | \$3.12                                                   | \$4.78                                   |  |  |
| Biphasic human insulin                                                                           | Insulin NPH 30/70<br>1.50 U per kg per day <sup>c</sup> | \$3.83                                                   | \$5.48                                   |  |  |

DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; NPH = neutral protamine Hagedorn; TZD = thiazolidinediones; U = units.

<sup>a</sup> The cost of the lowest cost alternative was applied for each drug class, plus a 10% markup and \$7.00 pharmacy fee per 90-day supply. It was assumed that patients used the average defined daily dose from the World Health Organization for each treatment.<sup>104</sup>

<sup>b</sup> Based on the cost of 30 mg generic pioglitazone in Saskatchewan.<sup>107</sup>

<sup>c</sup> Insulin doses obtained from patient sample in British Columbia (Dr. Marshall Dahl, unpublished data, 2008). This dataset reported insulin doses of 0.53, 0.75, and 1.5 U/kg for long-acting insulin analogues, insulin NPH, and biphasic human insulin, respectively. Total daily costs for insulins are based on assumed body weight of 87 kg (derived from RCTs included in the systematic review).

| Table 9: Management Costs of Long-Term Diabetes-Related Complications <sup>a</sup> |                                                   |          |          |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------|----------|----------|--|--|--|--|
| Complications                                                                      | Complications Fatal Non-Fatal In Subsequent Years |          |          |  |  |  |  |
| Ischemic heart disease                                                             | \$0                                               | \$5,950  | \$3,436  |  |  |  |  |
| Myocardial infarction                                                              | \$9,971                                           | \$19,012 | \$2,973  |  |  |  |  |
| Heart failure                                                                      | \$0                                               | \$17,392 | \$4,876  |  |  |  |  |
| Stroke                                                                             | \$9,382                                           | \$25,896 | \$3,593  |  |  |  |  |
| Amputation                                                                         | \$0                                               | \$40,170 | \$5,502  |  |  |  |  |
| Blindness                                                                          | \$0                                               | \$3,181  | \$2,267  |  |  |  |  |
| Renal failure                                                                      | \$0                                               | \$25,774 | \$11,698 |  |  |  |  |

<sup>a</sup> Costs from the Ontario Diabetes Economic Model (ODEM)<sup>106</sup> inflated to 2012 Canadian dollars (C\$) using the health component of the Consumer Price Index.

#### c) Costs Due to Hypoglycemic Episodes

For the reference case, it was assumed that episodes of mild to moderate hypoglycemia had no impact on health services resource use. Resource utilization associated with managing a severe hypoglycemic episode was based on studies by Leese et al.<sup>102</sup> and the National Institute for Health and Clinical Excellence (NICE).<sup>108</sup> Management costs were based on data from the Alberta case costing database (2006).<sup>109</sup> Because resource use was derived from the United Kingdom, the information for the previous analysis was presented to diabetes expert members of CERC for verification. In general, they felt the data were reasonable, although the percentage of patients receiving glucagon was thought to be higher than that in Canada. The average cost, therefore, of a severe hypoglycemic episode may be overestimated, potentially biasing results against therapies that are associated with an increased risk of hypoglycemia (e.g., insulin).

| Table 10: Cost of Severe Hypoglycemic Events                                     |          |     |            |  |
|----------------------------------------------------------------------------------|----------|-----|------------|--|
| Resource Use                                                                     | Weighted |     |            |  |
| Glucagon                                                                         | \$77.72  | 90% | \$69.94    |  |
| Consultation with ambulance services only                                        | \$639    | 34% | \$217.31   |  |
| Consultation with primary/emergency care only                                    | \$218    | 7%  | \$15.24    |  |
| Consultation with both primary/emergency care and ambulance service <sup>c</sup> | \$857    | 52% | \$445.58   |  |
| Direct or indirect hospital admission <sup>c</sup>                               | \$4,582  | 28% | \$1,282.84 |  |
| Total                                                                            |          |     | \$2,030.92 |  |

<sup>a</sup> Costs updated and inflated to 2012 Canadian dollars.

<sup>b</sup> Data from the United Kingdom.<sup>10</sup>

<sup>c</sup> Unit cost from Alberta.<sup>109</sup>

#### 3.2.9 Valuing Outcomes

The primary outcomes measure in the analysis was the quality-adjusted life-year, which captures both quantity and quality of life. Patients with type 2 diabetes were assumed to have a EuroQol 5-dimension (EQ-5D) score of 0.753 based on a US catalogue of EQ-5D scores from Sullivan et al.<sup>110,111</sup> Quality weights for modelled long-term diabetes-related complications were obtained from Sullivan et al.<sup>110,111</sup> when available. Otherwise, utility scores were obtained from a study by Clarke et al.,<sup>3</sup> who also used the EQ-5D instrument. Estimates from Clarke et al.<sup>3</sup> are often used in cost- effectiveness studies related to diabetes interventions. However, unlike Sullivan et al.,<sup>110,111</sup> Clarke et al.<sup>3</sup> did not control for non–diabetes-related complications or other confounding variables such as income, education, ethnicity, and number of comorbidities — all of which may impact health-related quality of life (HRQoL). Multiple complications were assumed to have an additive effect on utility. For example, the utility of a patient who has a myocardial infarction and then an amputation would first be decremented 0.0409, and then by a further 0.28.

| Table 11: Utility Decrements Associated With Modelled Diabetic Complication Health States |                               |                                                     |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|--|--|--|
| Complication                                                                              | Utility Decrement<br>(Year 1) | Utility Decrement in Subsequent Years<br>(Year ≥ 2) |  |  |  |
| Ischemic heart disease                                                                    | -0.0412                       | -0.0240                                             |  |  |  |
| Myocardial infarction                                                                     | -0.0409                       | -0.0120                                             |  |  |  |
| Heart failure                                                                             | -0.0635                       | -0.0180                                             |  |  |  |
| Stroke                                                                                    | -0.0524                       | -0.0400                                             |  |  |  |
| Amputation <sup>a</sup>                                                                   | -0.28                         | -0.28                                               |  |  |  |
| Blindness                                                                                 | -0.0498                       | -0.0498                                             |  |  |  |
| Renal failure <sup>a</sup>                                                                | -0.2630                       | -0.2630                                             |  |  |  |

<sup>a</sup> Utility decrements were not available from the US catalogue;<sup>110,111</sup> therefore, they were obtained from a study by Clarke et al.<sup>3</sup>

There is limited evidence that examines the impact of hypoglycemia and fear of hypoglycemia on HRQoL. Moreover, widely cited evidence in this area is of low quality. For the reference case analysis, patients experiencing mild to moderate hypoglycemia were assumed to have a transient reduction in HRQoL. Patients were assumed to move from having no problems to a health state characterized by moderate anxiety, with or without depression, and having some problems with performing usual activities, thus resulting in a disutility of 0.167 during the episode.<sup>112</sup> Each mild to moderate hypoglycemic episode was assumed to last for 15 minutes, which coincides with the 15/15 rule: 15 grams of carbohydrate followed

by 15 minutes of waiting.<sup>113</sup> Thus, each episode was associated with an annual decrement of 0.000004767 quality-adjusted life-years (QALYs). In contrast, those having a severe hypoglycemic episode were assumed to have a transient reduction in HRQoL followed by a chronic decrement in HRQoL due to fear of future hypoglycemic episodes. The same decrement applied in a published report by NICE<sup>108</sup> of an annual decrement of 0.01 was applied for each severe hypoglycemic event.

A utility decrement for weight gain in the primary economic analysis was not applied. Most widely cited studies derive such estimates from much larger weight differences (i.e., 13 kg to 30 kg) and it is unclear whether these can be applied to the smaller weight differences between agents observed in the NMA of second-line therapies. It is also uncertain whether these utility decrements are sustained over time. A sensitivity analysis was performed based on data presented in the NICE obesity guidelines,<sup>114,115</sup> which assumed a utility decrement of 0.001950135 per unit increase in BMI. This utility decrement was applied to each year of the simulation based on the estimated BMI for each treatment.

#### 3.2.10 Handling of Uncertainty

#### a) Univariate Sensitivity Analyses

Univariate sensitivity analyses were conducted to explore the impact of variation in model inputs and assumptions. Parameters varied in sensitivity analyses were selected based on findings from the previous analysis, and in light of the magnitude of changes observed in the updated review of the clinical evidence. Therefore, not all parameters tested in the original analysis were reassessed.

#### b) Cost-Effectiveness Acceptability Curves

A non-parametric bootstrapping method (a technique used to approximate the accuracy — for example, the standard error and confidence interval — of a statistical estimate), consisting of 999 bootstrap iterations of 100 patients each, was used to estimate the mean quality-adjusted life expectancy and lifetime costs for each treatment arm. Costs and effectiveness for each treatment, as derived from the 999 bootstrap iterations, were plotted as cost-effectiveness acceptability curves to convey the inherent uncertainty in the reference case results. Net benefits cost- effectiveness acceptability curves were generated based on the proportion of bootstrap iterations with the highest net monetary benefit across a range of willingness-to-pay thresholds, according to the following formula:

Net monetary benefit =  $\lambda^*E - C$ , where  $\lambda$  = decision-maker's willingness-to-pay per QALY gained; E = total QALYs for each treatment; C = total lifetime cost of each treatment.

#### c) Threshold Analysis

Threshold analyses were also conducted for treatments which were not cost-effective in the base case. They were done to determine the minimal price change necessary for each of those classes to become the second-line treatment strategy with the most favourable cost-effectiveness results in comparison with other second-line treatments strategies.

### 3.3 Results

#### 3.3.1 Reference Case

From the updated analysis (Table 12), sulfonylureas were associated with the lowest total lifetime costs (\$48,397), while use of biphasic insulin incurred the highest lifetime costs (\$60,891). Cost-effectiveness estimates were largely driven by the difference in prices across treatments. Sulfonylureas were associated with the most favourable cost-effectiveness estimate, with an incremental cost of \$8,445 per QALY gained relative to metformin monotherapy. Other active treatments were associated with unfavourable cost-effectiveness estimated or demonstrated very high ICURs) when compared with the next least costly treatment.

| Table 12: Total Lifetime Costs, Quality-Adjusted Life-Years, and IncrementalCost-Effectiveness Results from the Updated Reference Case Analysis |                 |                     |                                             |                                                                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------------------------------|------------------------------------------------------------------------------------------|--|
| Treatment                                                                                                                                       | Cost            | Effectiveness       | ICUR                                        |                                                                                          |  |
| Added to<br>Metformin                                                                                                                           |                 | (QALY)              | Incremental<br>vs. Metformin<br>Monotherapy | Sequential                                                                               |  |
| None/placebo                                                                                                                                    | \$47,949        | 8.6083              |                                             | N/A                                                                                      |  |
| Sulfonylurea                                                                                                                                    | \$48,397        | 8.6613              | \$8,445                                     | \$8,445                                                                                  |  |
| Alpha-<br>glucosidase<br>inhibitor                                                                                                              | \$50,603        | 8.6662              | \$45,783                                    | \$452,630                                                                                |  |
| GLP-1 analogue                                                                                                                                  | \$60,254        | 8.6824              | \$165,916                                   | \$595,653                                                                                |  |
| Treatments Ruleo                                                                                                                                | l Out by Domina | ance or Extended Do | ominance                                    |                                                                                          |  |
| Meglitinide                                                                                                                                     | \$48,938        | 8.6520              | \$22,589                                    | Dominated by sulfonylurea                                                                |  |
| TZD                                                                                                                                             | \$50,873        | 8.6600              | \$56,548                                    | Dominated by sulfonylurea and alpha-glucosidase inhibitor                                |  |
| DPP-4 inhibitor                                                                                                                                 | \$54,744        | 8.6602              | \$130,710                                   | Dominated by sulfonylurea and alpha-glucosidase inhibitor                                |  |
| Basal insulin                                                                                                                                   | \$56,077        | 8.6594              | \$158,934                                   | Dominated by sulfonylureas; alpha-<br>glucosidase inhibitor; TZD; and DPP-4<br>Inhibitor |  |
| Biphasic insulin                                                                                                                                | \$60,891        | 8.6761              | \$190,713                                   | Dominated by GLP-1 analogue                                                              |  |

DPP-4 = dipeptidyl peptidase-4; in; GLP-1 = glucagon-like peptide-1; NA = not applicable; QALY = quality-adjusted life-year; TZD = thiazolidinedione.

Sulfonylureas demonstrated the highest net benefit among active treatments and the most favourable ranking across all willingness-to-pay thresholds considered. The cost-effectiveness acceptability curve (Figure 4) shows that the addition of a sulfonylurea to metformin had the highest probability of being the most cost-effective strategy for willingness-to-pay thresholds above approximately \$22,000 per QALY gained.

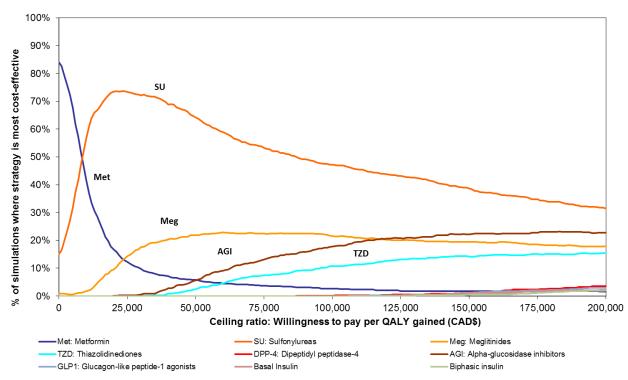



Figure 4: Cost-Effectiveness Acceptability Curve for the Reference Case Analysis

#### 3.3.2 Sensitivity Analyses

The results of the updated sensitivity analyses around the cost-effectiveness of second-line treatments indicated that sulfonylureas added to metformin remained the most cost-effective option. Full results from the sensitivity analyses are provided in Appendix 9. The following is a summary of some of the notable results from sensitivity analyses:

- When incorporating the effect estimates from direct pairwise comparisons, the ranking of generic pioglitazone (TZD) improved, largely due to the significant reduction in its unit cost, resulting in a lower incremental cost of treatment compared with metformin.
- Applying a higher disutility of 0.0052 to every mild or moderate hypoglycemic event (NICE)<sup>116</sup> deteriorated the cost-effectiveness of sulfonylureas compared with metformin monotherapy, but they remained the most cost-effective option. Other impacts of this change included alpha-glucosidase inhibitors being dominated by sulfonylureas, and the incremental cost-effectiveness of GLP-1 analogues deteriorated to \$1,029,960 compared with metformin and sulfonylurea combination therapy.
- Assuming quality of life reduction resulting from weight gain (according to the NICE obesity guidelines,<sup>114,115</sup> a utility decrement of 0.001950135 per unit increase in BMI was applied) or higher rates of mild to moderate hypoglycemia<sup>37</sup> caused a deterioration in the cost- effectiveness results for DPP-4 inhibitors, so that they only remained favourable in relation to GLP-1 analogues, basal insulins, and biphasic insulin ( ).

| Table 13: Total Lifetime Costs, QALYs, and Incremental Cost-Effectiveness Results From a SensitivityAnalysis Assuming a Utility Decrement of 0.001950135/U Increase in BMI |          |               |                        |                                                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|------------------------|----------------------------------------------------------|--|--|
| Strategy                                                                                                                                                                   | Cost     | Effectiveness | Incremental<br>vs. Met | Sequential                                               |  |  |
| Met                                                                                                                                                                        | \$47,949 | 8.5945        |                        |                                                          |  |  |
| Met + SU                                                                                                                                                                   | \$48,511 | 8.6306        | \$15,540               | \$15,540                                                 |  |  |
| Met + AGI                                                                                                                                                                  | \$50,603 | 8.6600        | \$40,519               | \$71,291                                                 |  |  |
| Met + GLP-1                                                                                                                                                                | \$60,254 | 8.6824        | \$139,931              | \$430,009                                                |  |  |
| Dominance and Extended Dominance                                                                                                                                           |          |               |                        |                                                          |  |  |
| Met + Meg                                                                                                                                                                  | \$48,938 | 8.6241        | \$33,371               | Dominated by: Met + SU                                   |  |  |
| Met + TZD                                                                                                                                                                  | \$50,873 | 8.6246        | \$97,023               | Dominated by: Met + SU; and Met + AGI                    |  |  |
| Met + DPP-4                                                                                                                                                                | \$54,744 | 8.6439        | \$137,469              | Dominated by: Met + AGI                                  |  |  |
| Met + basal<br>insulin                                                                                                                                                     | \$56,077 | 8.6325        | \$213,843              | Dominated by: Met + AGI; and Met + DPP-4                 |  |  |
| Met + biphasic<br>insulin                                                                                                                                                  | \$60,891 | 8.6370        | \$304,734              | Dominated by: Met + AGI; Met + DPP-4; and<br>Met + GLP-1 |  |  |

AGI = alpha-glucosidase inhibitor; BMI = body mass index; DPP-4 = dipeptidyl peptidase-4; in; GLP-1 = glucagon-like peptide-1 analogue; Meg = meglitinides; Met = metformin; QALY = quality-adjusted life-year; SU = sulfonylurea; TZD = thiazolidinedione; U = unit; vs. = versus.

Upon initial reduction in A1C due to treatment, the UKPDS model assumes a gradual increase in A1C over time that occurs at the same slope in all treatment arms. To address the limitation of the reference case analysis in the absence of therapy progression over time, it was assumed in a sensitivity analysis that when A1C increased to 9%, insulin NPH (0.75 U/kg/day) would be added as a third-line treatment in all treatment arms (for the insulin NPH arm, this assumption represented an increase in dose by 0.75 U/kg/day). The results of this analysis showed that sulfonylureas remained the most favourable option, dominating all other treatment arms (including metformin), with the exception of GLP-1 analogues.

#### 3.3.3 Threshold Analysis

The results of varying unit prices in the threshold analysis showed that, in order to become a more favourable second-line treatment strategy than sulfonylureas, the unit cost of the modelled DPP-4 inhibitor would have to be 90% lower (resulting in an ICUR of \$7,539 per QALY gained relative to metformin monotherapy). When price reductions less than 90% were modelled, DPP-4 inhibitors remained either dominated or extendedly dominated. For GLP-1 analogues, a 95% reduction in unit price would be necessary for this class to be the most cost-effective treatment option (for an ICUR of \$761 per QALY gained relative to metformin monotherapy). For price reductions between 75% and 90%, sulfonylureas were the most cost-effective option, and ICURs for the GLP-1 analogue relative to sulfonylureas ranged from approximately \$104,000 to \$12,000 per QALY gained. Price reductions below 75% resulted in a fifth or sixth place ranking for cost-effectiveness. The full results of the threshold analysis are presented in Table 14.

| Table 14: Threshold Analysis for DPP-4 Inhibitors and GLP-1 Analogues as Second-line Treatments |                    |                   |                                        |                                             |      |  |
|-------------------------------------------------------------------------------------------------|--------------------|-------------------|----------------------------------------|---------------------------------------------|------|--|
| Class                                                                                           | Price<br>Reduction | New Unit<br>Price | ICUR<br>(vs. metformin<br>monotherapy) | Sequential ICUR                             | Rank |  |
| DPP-4<br>(linagliptin 5 mg)                                                                     | Reference<br>case  | \$2.55            | \$130,710 per QALY                     | Dominated by SU and AGI                     | 5    |  |
|                                                                                                 | 50%                | \$1.275           | \$62,282 per QALY                      | Dominated by SU and AGI                     | 5    |  |
|                                                                                                 | 60%                | \$1.02            | \$48,596 per QALY                      | Dominated by SU                             | 4    |  |
|                                                                                                 | 75%                | \$0.638           | \$28,067 per QALY                      | Dominated by SU                             | 3    |  |
|                                                                                                 | 80%                | \$0.510           | \$21,224 per QALY                      | Dominated by SU                             | 2    |  |
|                                                                                                 | 90%                | \$0.255           | \$7,539 per QALY                       | \$7,539 per QALY<br>(relative to metformin) | 1    |  |
|                                                                                                 |                    |                   |                                        |                                             |      |  |
| GLP-1<br>(exenatide 20 mcg)                                                                     | Reference<br>case  | \$2.295           | \$165,916 per QALY                     | \$595,653 per QALY<br>(relative to AGI)     | 8    |  |
|                                                                                                 | 50%                | \$1.148           | \$78,992 per QALY                      | \$197,787 per QALY<br>(relative to AGI)     | 5    |  |
|                                                                                                 | 60%                | \$0.918           | \$61,607 per QALY                      | \$118,213 per QALY<br>(relative to AGI)     | 6    |  |
|                                                                                                 | 75%                | \$0.574           | \$36,530 per QALY                      | \$103,759 per QALY<br>(relative to SU)      | 3    |  |
|                                                                                                 | 80%                | \$0.460           | \$26,838 per QALY                      | \$73,168 per QALY<br>(relative to SU)       | 3    |  |
|                                                                                                 | 90%                | \$0.230           | \$9,453 per QALY                       | \$11,990 per QALY<br>(relative to SU)       | 2    |  |
|                                                                                                 | 95%                | \$0.115           | \$761 per QALY                         | \$761 per QALY<br>(relative to metformin)   | 1    |  |

AGI = alpha-glucosidase inhibitor; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1 analogue; ICUR = incremental cost-utility ratio; QALY = quality-adjusted life-year; SU = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

# 4 **DISCUSSION**

The objective of this review was to conduct an update of CADTH's 2010 systematic review and NMAs of diabetes pharmacotherapy for patients who were inadequately controlled with metformin monotherapy. The literature search identified 20 additional RCTs that were incorporated into the CADTH review, increasing the total number to 69 unique RCTs.

# 4.1 Interpretation of Systematic Review Results

The results of the updated NMAs for A1C, hypoglycemia, and body weight were consistent with the original CADTH analyses, as well as other systematic reviews and meta-analyses that have assessed the comparative efficacy of antidiabetes drugs in patients with inadequate glycemic control on metformin monotherapy.<sup>117-119</sup> Also consistent with other systematic reviews on oral antidiabetes drugs,<sup>120,121</sup> there remained a lack of conclusive evidence regarding the effects of various therapies on the long-term complications of diabetes.

Regarding glycemic control, the updated NMA demonstrated that each of the eight drug classes resulted in statistically significant reductions in A1C relative to placebo, with no statistically significant differences between any of the active treatments. For GLP-1 analogues, the revised estimate of effect against metformin alone was -0.95%, slightly larger than the original estimate of -0.82%. For DPP-4 inhibitors, the revised estimate diminished from -0.80% in the original analysis to -0.70%. Neither difference is within the range commonly cited as being of clinical importance (i.e., 0.5% to 1.0%).

Sulfonylureas, meglitinides, TZDs, and insulins were associated with statistically significant increases in body weight ranging from 1.8 kg to 3.1 kg relative to metformin alone. DPP-4 inhibitors and alpha-glucosidase inhibitors were found to not affect body weight, and GLP-1 analogues were associated with a statistically significant reduction in body weight of 1.7 kg. There are no well-accepted thresholds for the minimal weight change that is considered to be clinically significant, although weight reductions of 5% to 10% are cited as such in the literature.<sup>114,122-126</sup> In this context, the differences in body weight that we observed between classes are probably modest for most patients. The overall weighted mean body weight of patients represented in the NMA was 91 kg; therefore, the two situations where the estimated difference between two treatments approached the 5% threshold was the difference between GLP-1 analogues and biphasic insulin (4.9 kg), and GLP-analogues and TZDs (4.5 kg). The weight changes observed in the included trials represent treatment durations of up to one year, and often less. It remains uncertain whether weight gain with the insulin secretagogues and insulins continues over the long-term, or whether stabilization occurs at some point.

Both insulins and insulin secretagogues produced significantly increased hypoglycemia relative to placebo, whereas the TZDs, DPP-4 inhibitors, GLP-1 analogues, and alpha-glucosidase inhibitors did not. Severe hypoglycemia events were rarely observed across all drug classes, including the insulins and insulin secretagogues. In large observational studies and long-term RCTs, estimates of the risk of severe hypoglycemia vary considerably. Leese et al. reported 0.90 and 11.8 events requiring emergency medical care per 100 patient-years with insulin secretagogues and insulin, respectively,<sup>102</sup> while Bodmer et al. reported rates of 0.06 and 0.24 events resulting in hospitalization or death per 100 patient-years.<sup>50</sup> In comparison, the ADVANCE trial lists reported lower incidence rates than Leese et al. (0.7 per 100 patient-years in the intensive glycemic control arm versus 0.4 per 100 patient-years in the standard control arm), even though their definition of severe hypoglycemia was more liberal in that medical resource use was not

required.<sup>127</sup> In the RECORD study, only 0.3% of subjects in the control arm (all of whom used metformin and a sulfonylurea) experienced a severe hypoglycemic event over the 5.5-year mean follow-up of the study.<sup>52</sup> Overall, it appears that the risk of severe hypoglycemia with insulin secretagogues is generally low; therefore, any advantages of TZDs, GLP-1 analogues, and DPP-4 inhibitors are probably modest in absolute terms. More research is required to determine whether these agents provide greater benefits in patient groups recognized to be at higher risk of severe hypoglycemia or its consequences, such as the elderly.

Each class of antidiabetes therapy is associated with risks that partially offset its benefits. Among the older agents, the insulins and insulin secretagogues carry an increased risk of hypoglycemia and weight gain. TZDs have been shown to increase the risk of CHF, fractures, and weight gain.<sup>52,128-133</sup> Indeed, since publication of the original CADTH report on second-line therapy, severe restrictions have been placed on the use of rosiglitazone due to the risks of ischemic heart disease.<sup>6</sup> Furthermore, there is some evidence to show that pioglitazone may increase the risk of bladder cancer. <sup>134,135</sup> Although there is considerably more clinical experience with the DPP-4 inhibitors and GLP-1 analogues since the original CADTH report was published, the long-term safety profile of these newer agents compared with older classes is still evolving; results from ongoing long-term trials of these agents powered for cardiovascular outcomes will provide important insights in the coming years.<sup>136-140</sup> The product monographs for all of the incretins (i.e., DPP-4 inhibitors and GLP-1 analogues) currently marketed in Canada include a warning regarding the potential risk of acute pancreatitis with these agents. The association between pancreatitis and incretin agents has not been fully elucidated and is largely based on post-market reports.<sup>17-21</sup> A recent population-based, casecontrol study involving 1,269 hospitalized cases with acute pancreatitis and an equal number of controls reported a significantly increased risk of pancreatitis in users of exenatide or sitagliptin compared to nonusers (odds ratio, 2.24 [95% CI, 1.36 to 3.68]).<sup>141</sup>

Several observational studies have suggested that sulfonylureas are associated with an increased risk of mortality and cardiovascular events and death compared to metformin.<sup>142-144</sup> Most recently, a large retrospective cohort study from the Agency for Healthcare Research and Quality reported that the use of sulfonylureas was associated with 2.2 (95% CI: 1.4 to 3.0) more cardiovascular disease events per 1,000 person-years than metformin.<sup>144</sup> All of the patients in the trials included in our systematic review were receiving metformin as background therapy; therefore, the results of these observational studies are not necessarily applicable to the population of interest for this review. In addition, it remains unclear if these results are attributable to cardioprotective effects of metformin, cardiotoxicity of sulfonylureas, or insufficient adjustment of known or unknown confounding factors.

# 4.2 Pharmacoeconomic Considerations

The reference case results of the 2010 CADTH report on the cost-effectiveness of second-line treatments indicated that sulfonylureas were associated with the most favourable cost- effectiveness estimate; with an incremental cost of \$12,757 per QALY gained relative to metformin monotherapy (full results are provided in Appendix 10). The updated cost- effectiveness analysis, based on the results of the updated NMA, indicated that sulfonylureas remained the most cost-effective second-line therapy in patients inadequately controlled on metformin monotherapy, despite higher rates of hypoglycemia relative to newer oral antidiabetic drugs. Similar to the original analysis, the favourable cost-effectiveness results for sulfonylureas were attributable to the following:

- low price relative to other classes of drugs, especially newer agents and insulin
- minimal differences in glycemic control between active drug classes, resulting in small differences in complication rates and QALYs gained

• low absolute risk of severe hypoglycemia requiring health care resources use.

A large number of sensitivity analyses were performed to examine robustness of results to variation in model inputs and assumptions. In all instances, sulfonylureas were the most cost- effective strategy, a result that was largely driven by the very low cost of these agents relative to other agents.

The GLP-1 analogue and DPP-4 inhibitors were among the classes with the least favourable costeffectiveness results, largely driven by their high cost and similar gains in glycemic control as less costly drug classes. Threshold analyses revealed that significant unit price reductions would be necessary in order to displace sulfonylureas as the most cost-effective second-line therapy.

# 4.3 Strengths and Limitations

The updated systematic review was conducted according to a protocol specified in advance, using standard approaches for identification of evidence, data abstraction, quality assessment, and analysis.<sup>29</sup> By conducting an NMA, both direct and indirect estimates of effect were captured, and results are reported in a manner that is practical for health care professionals and decision-makers. Results from the NMA were highly consistent with those from direct pairwise comparisons across all outcomes, a finding that adds validity to the analysis. Sensitivity analyses and meta-regressions were conducted to explore methodological heterogeneity. The consistency of these results with the reference case analysis demonstrates the robustness of the findings. In addition, the findings reported by CADTH on the efficacy of second-line treatments added onto metformin have been independently confirmed in similar published NMAs.<sup>117,118</sup>

Despite the aforementioned strengths, limitations related to the available evidence warrant discussion. First, the population of interest for the systematic review consisted of patients inadequately controlled with first-line metformin monotherapy who required a second-line agent; but most identified trials included patients who might have received various antidiabetes agents prior to the use of metformin monotherapy. However, the relative treatment effects we report are likely transferable to patients treated with initial metformin monotherapy, as the reference case results were robust to adjustment (through meta-regression) for differences across studies in duration of diabetes and baseline A1C (likely more important predictors of efficacy than treatment history). Second, there was little evidence for the effect of second-line agents on long-term diabetes-related complications, hence comparative efficacy on such outcomes must be inferred from A1C, a surrogate with some important limitations, particularly with respect to the prediction of macrovascular outcomes.<sup>145,146</sup> As well, rates of severe hypoglycemia were too low for meaningful comparisons between treatments on this important adverse event. Finally, due to the relatively short duration of most included trials, it was impossible to accurately determine whether there were differences in the durability of antihyperglycemic effects across the various drug classes. However, it is noteworthy that one open-label study — EUREXA (which could not be included in the NMA) suggested that patients treated with exenatide were able to maintain glycemic control longer than those treated with glimepiride.<sup>43</sup>

The reference case for the NMA was conducted by grouping agents into classes (e.g., sulfonylureas, DPP-4 inhibitors, and GLP-1 analogues) — an approach that requires the important assumption that agents within a particular drug class are similar enough to pool. The individual agent NMA was conducted to investigate the similarity of effect sizes within each drug class; the results suggested that the effects are similar within the classes, supporting the decision to conduct the class-level analysis. The decision to pool insulin NPH with long-acting insulin analogues (i.e., insulin glargine and insulin detemir) into a single "basal

insulin" drug class may be questioned by some, as these agents have different pharmacodynamics profiles. However, CADTH's prior assessment of long-acting insulin analogues found little to no difference between insulin NPH and insulin glargine for A1C (weighted mean difference [WMD] [95% CI] = -0.05% [-0.13% to 0.04%]) or insulin NPH and insulin detemir [WMD (95% CI) = 0.13% (0.03% to 0.22%)].<sup>147,148</sup> These findings suggest that it is appropriate to pool these agents into a single "basal insulin" class for the purposes of this NMA.

Regarding limitations of the pharmacoeconomic analysis, it should be noted that the UKPDS model does not explicitly incorporate a number of diabetes-related morbidities (e.g., peripheral neuropathy and ulceration). Furthermore, some complications are represented as a single end point (e.g., blindness and end-stage renal disease) in the model rather than intermediate states (e.g., retinopathy and nephropathy) that may themselves be associated with reduced HRQoL. Because a reduced incidence of these outcomes and the resulting benefits of HRQoL and reduced treatment costs are not captured, use of the UKPDS model may result in slight overestimation of incremental cost-effectiveness ratios. However, the impact of this factor on cost- effectiveness estimates is likely minimal given the minimal differences in glycemic control across drug classes.

Modelling changes in treatment sequences over time is challenging with any model, including the UKPDS Outcomes Model. There is uncertainty about which treatment patients will add on or switch to after inadequate control on second-line therapy. Furthermore, when patients use multiple treatments over time, it is difficult to assess whether benefits conferred are attributable to the treatment of interest or to subsequent treatments. Due to these considerations, it was assumed in the reference case that patients remained on their respective second-line therapy over their expected lifetime, without adding or switching to subsequent agents. This approach is admittedly not reflective of clinical practice given the progressive nature of diabetes. The effect of this assumption was tested through sensitivity analyses, whereby patients were assumed to add on NPH insulin as third-line therapy after predefined criteria were met (i.e., when a patient's A1C level reached or surpassed 9.0%). The addition of insulin to the treatment regimen of patients inadequately controlled with oral medications is recommended in clinical practice guidelines. However, to conduct these sensitivity analyses within the UKPDS model, the weight and hypoglycemia inputs had to be front-loaded (i.e., applied in Year One) because, unlike A1C, these parameters could not be modified over time. Some elements of the sensitivity analysis results could therefore not be discounted appropriately. In the future, if the UKPDS model is updated to enable a more seamless integration of changes in treatment sequences over time, re-analysis may be warranted.

Regarding the inputs used in the analysis, there was considerable uncertainty over the disutility associated with insulin use, weight gain, and hypoglycemia, as well as event rates for severe hypoglycemia. In the absence of sound data for these inputs, conservative estimates were used for the reference case analysis but were tested in the sensitivity analyses.

# 5 CONCLUSIONS AND IMPLICATIONS FOR DECISION- OR POLICY-MAKING

In this systematic review and NMA of RCT evidence related to the second-line use of antidiabetes therapies after inadequate control with metformin monotherapy, all drug classes added to metformin achieved statistically significant reductions in A1C. Events of severe hypoglycemia were rare for all agents; however, the insulins and insulin secretagogues were associated with a statistically significant increase in overall hypoglycemia relative to the other classes. Increased body weight was observed with the majority of second-line therapies — the exceptions being DPP-4 inhibitors, alpha-glucosidase inhibitors, and GLP-1 analogues. Further studies of adequate size and duration are required to assess comparative efficacy in durability of antihyperglycemic effect, long-term complications of diabetes, and quality of life.

The results of the updated cost-effectiveness analysis comparing second-line treatments for type 2 diabetes after inadequate control with metformin monotherapy were congruent with the results of the original analysis. Sulfonylureas added to metformin represented the most cost-effective second-line therapy, a finding that was robust in numerous sensitivity analyses. These results were primarily driven by the low cost of sulfonylureas relative to other drugs, marginal differences in glycemic control and long-term complications between sulfonylureas and other agents, and the expected low absolute risk of severe hypoglycemic episodes requiring health care resource use. GLP-1 analogues, which could not be considered in the original analysis, as no agents were approved in Canada at the time, were found to be associated with a high ICUR in the updated analysis. In order to surpass the sulfonylureas as the most cost-effective second-line therapy, reductions in cost of 90% or more would be required for this class and the DPP-4 inhibitors. Because of the lack of adequate clinical data, there was considerable uncertainty surrounding some of the key drivers in the economic analysis. These included the impact of insulin use and hypoglycemia on quality of life, and the incidence of severe hypoglycemia across various treatments.

# 6 **REFERENCES**

- Canadian Agency for Drugs and Technologies in Health. Second-line therapy for patients with diabetes inadequately controlled on metformin: a systematic review and cost-effectiveness analysis [Internet]. Ottawa: The Agency; 2010 Aug. [cited 2013 May 15]. (Optimal therapy report; vol. 4 no. 2). Available from: <u>http://www.cadth.ca/media/pdf/C1110\_SR\_Report\_final\_e.pdf</u>
- Canadian Agency for Drugs and Technologies in Health. Optimal therapy recommendations for the prescribing and use of second-line therapy for patients with type 2 diabetes inadequately controlled on metformin [Internet]. Ottawa: The Agency; 2010 Aug. (CADTH optimal therapy report; vol. 4 no. 5). [cited 2013 May 15]. Available from: http://www.cadth.ca/media/pdf/C1110 OT Reccommendations final e.pdf
- 3. Clarke PM, Gray AM, Briggs A, Farmer AJ, Fenn P, Stevens RJ, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia. 2004 Oct;47(10):1747-59.
- McIntosh B, Cameron C, Singh S, Yu C, Ahuja T, Welton NJ, et al. Second-line therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: A systematic review and mixed treatment comparisons meta-analysis. Open Medicine [Internet]. 2011 Mar 1 [cited 2013 May 5];5(1). Available from: <u>http://www.openmedicine.ca/article/view/423/382</u>
- Klarenbach S, Cameron C, Singh S, Ur E. Cost-effectiveness of second-line antihyperglycemic therapy in patients with type 2 diabetes mellitus inadequately controlled on metformin. CMAJ [Internet].
   2011 Nov 8 [cited 2013 May 5];183(16):E1213-E1220. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216433
- Product monograph: Avandia. Rosiglitazone (as rosiglitazone maleate) 2 mg, 4 mg and 8 mg tablets [Internet]. Mississauga (ON): GlaxoSmithKline; 2012 Mar 5. 52 p. [cited 2013 May 15]. Available from: <u>http://www.gsk.ca/english/docs-pdf/product-monographs/Avandia.pdf</u>
- 7. Product monograph: Diamicron MR (gliclazide modified release tablets) 30 mg. Laval (QC): Servier Canada Inc.; 2009 Jan 15.
- 8. Product monograph: Diamicron (gliclazide) 80 mg tablets. Laval (QC): Servier Canada Inc.; 2009 Jan 15.
- 9. Product monograph: Amaryl (glimepiride) tablets 1,2 and 4 mg. Laval (QC): Sanofi-Aventis Canada Inc.; 2009 Aug 7.
- 10. Product monograph: Diabeta (glyburide) manufacturer's standard 2.5 and 5 mg tablets. Laval (QC): Sanofi-Aventis Canada Inc.; 2008 Jun 23.
- 11. Product monograph: Apo-Chlorpropamide (chlorpropamide tablets USP) 100 mg and 250 mg. Weston (ON): Apotex Inc.; 2009 Nov 20.
- 12. Product monograph: Tolbutamide 500 (tolbutamide tablets USP) 500 mg. Laval (QC): Pro Doc Ltée; 2010 Feb 2.

- 13. Product monograph: Actos (pioglitazone hydrochloride) 15, 30, 45 mg tablets. Mississauga (ON): Takeda Canada, Inc.; 2009 Oct 22.
- 14. Product monograph: Avandia. Rosiglitazone (as rosiglitazone maleate) 1 mg, 2mg, 4mg and 8 mg tablets. Mississauga (ON): GlaxoSmithKline Inc.; 2009 Mar 12.
- 15. Product monograph: GlucoNorm (repaglinide tablets) 0.5 mg, 1 mg and 2 mg. Mississauga (ON): Novo Nordisk Canada Inc.; 2009 Jul 8.
- 16. Product monograph: Glucobay (acarbose) 50 and 100 mg tablets. Toronto: Bayer Inc.; 2008 Jun 10.
- 17. Product monograph: Januvia. Sitagliptin tablets (as sitagliptin phosphate monohydrate) 100 mg. Kirkland (QC): Merck Frosst Canada Ltd.; 2009 Dec 14.
- 18. Product monograph: Onglyza (saxagliptin) tablets 5 mg. Montreal (QC): Bristol-Myers Squibb Canada; 2009 Sep 14.
- 19. Trajenta linagliptin tablets 5 mg [product monograph]. Burlington (ON): Boehringer Ingelheim; 2011 Jul 26. Revised July 30, 2012.
- 20. Byetta exenatide solution for injection/250 μg/mL [product monograph]. Toronto (ON): Eli Lilly Canada Inc.; 2011.
- 21. Victoza liraglutide 6 mg/ml solution [product monograph]. Mississauga (ON): Novo Nordisk Canada Inc.; 2010 May 21. Revised November 15, 2011.
- 22. Product monograph: NovoMix® 30. Mississauga (ON): Novo Nordisk Canada Inc; 2009 Dec 23.
- 23. Product monograph: Humalog, Humalog mix25, Humalog mix50 [Internet]. Scarborough (ON): Eli Lilly Canada Inc; 2009. [cited 2013 May 15]. Available from: <u>http://www.lilly.ca/en?t=/contentManager/onStory&i=1306943185696&l=0&e=UTF-</u> <u>8&StoryID=1323712953665&ParentID=1246635267998</u>
- 24. Product monograph: Apidra [Internet]. Laval (QC): Sanofi-aventis Canada Inc.; 2010 Apr 7. [cited 2013 May 15]. Available from: <u>http://www.sanofi-aventis.ca/products/en/apidra.pdf</u>
- 25. Product monograph: Humulin R, Humulin N, Humulin 30/70 [Internet]. Toronto (ON): Eli Lilly Canada; 2012 Nov 26. 54 p. [cited 2013 May 15]. Available from: <u>http://www.lilly.ca/en?t=/documentManager/sfdoc.file.supply&e=UTF-</u> 8&i=1306943185696&I=0&fileID=1354038379976
- 26. Product monograph: Levemir [Internet]. Mississauga (ON): Novo Nordisk Canada Inc; 2010 Oct 24. [cited 2013 May 15]. Available from: <u>http://www.novonordisk.ca/PDF\_Files/LevemirPM102408\_En.pdf</u>
- 27. Product monograph: Lantus [Internet]. Laval (QC): Sanofi-aventis Canada Inc; 2010 Jul 4. [cited 2013 May 15]. Available from: <u>http://www.sanofi-aventis.ca/products/en/lantus.pdf</u>
- 28. Product monograph: Novorapid. Mississauga (ON): Novo Nordisk Canada; 2010.

- 29. Canadian Agency for Drugs and Technologies in Health. Second-line therapy for patients with diabetes inadequately controlled on metformin project protocol [Internet]. Ottawa: The Agency; 2009. (Optimal therapy report; vol. 4 no. 1). [cited 2013 May 15]. Available from: <a href="http://www.cadth.ca/media/pdf/compus\_2nd\_line\_T2DM\_Protocol\_e.pdf">http://www.cadth.ca/media/pdf/compus\_2nd\_line\_T2DM\_Protocol\_e.pdf</a>
- Canadian Agency for Drugs and Technologies in Health. Clinical review: third-line therapy for patients with type 2 diabetes inadequately controlled with metformin and sulfonylureas [Internet]. Ottawa: The Agency; 2010 Aug. [cited 2013 May 15]. (CADTH therapeutic review). Available from: <u>http://www.cadth.ca/media/pdf/Diabetes\_TR\_Clinical\_Report\_Final\_e.pdf</u>
- Canadian Agency for Drugs and Technologies in Health. Second-line therapy for patients with diabetes inadequately controlled on metformin: addendum to project protocol - August 14, 2009 [Internet]. Ottawa: The Agency; 2009. [cited 2013 May 14]. Available from: <u>http://www.cadth.ca/media/compus/pdf/C1110-Protocol-Addendum-as-posted.pdf</u>
- 32. Scottish Intercollegiate Guidelines Network. SIGN 50: a guideline developers' handbook [Internet]. Revised edition. Edinburgh: The Network; 2008 Jan. [cited 2013 May 15; revised 2011 Nov]. Available from: <u>http://www.sign.ac.uk/guidelines/fulltext/50/</u>
- 33. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS -- a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing. 2000;10:325-37.
- 34. Multi-parameter Evidence Synthesis Research Group. Mixed treatment comparisons [Internet]. Bristol (UK): University of Bristol; 2007 Dec 20. [cited 2013 May 15]. Available from: <u>http://www.bristol.ac.uk/social-community-medicine/projects/mpes/mtc/</u>
- 35. Ntzoufras I. Bayesian modeling using WinBUGS. Hoboken (NJ): Wiley; 2009.
- 36. Von Bibra H, Diamant M, Scheffer PG, Siegmund T, Schumm-Draeger PM. Rosiglitazone, but not glimepiride, improves myocardial diastolic function in association with reduction in oxidative stress in type 2 diabetic patients without overt heart disease. Diab Vasc Dis Res. 2008 Nov;5(4):310-8.
- 37. Ferrannini E, Fonseca V, Zinman B, Matthews D, Ahren B, Byiers S, et al. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes Metab. 2009 Feb;11(2):157-66.
- 38. Arechavaleta R, Seck T, Chen Y, Krobot KJ, O'Neill EA, Duran L, et al. Efficacy and safety of treatment with sitagliptin or glimepiride in patients with type 2 diabetes inadequately controlled on metformin monotherapy: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab. 2011 Feb;13(2):160-8.
- 39. Brazg R, Xu L, Dalla Man C, Cobelli C, Thomas K, Stein PP. Effect of adding sitagliptin, a dipeptidyl peptidase-4 inhibitor, to metformin on 24-h glycaemic control and beta-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2007 Mar;9(2):186-93.
- 40. Bunck MC, Diamant M, Corner A, Eliasson B, Malloy JL, Shaginian RM, et al. One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2009 May;32(5):762-8.

- Gallwitz B, Bohmer M, Segiet T, Molle A, Milek K, Becker B, et al. Exenatide twice daily versus premixed insulin aspart 70/30 in metformin-treated patients with type 2 diabetes: a randomized 26week study on glycemic control and hypoglycemia. Diabetes Care [Internet]. 2011 Mar [cited 2013 May 15];34(3):604-6. Available from: http://care.diabetesjournals.org/content/34/3/604.full.pdf+html
- 42. Gallwitz B, Rosenstock J, Rauch T, Bhattacharya S, Patel S, von EM, et al. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet. 2012 Aug 4;380(9840):475-83.
- 43. Gallwitz B, Guzman J, Dotta F, Guerci B, Simo R, Basson BR, et al. Exenatide twice daily versus glimepiride for prevention of glycaemic deterioration in patients with type 2 diabetes with metformin failure (EUREXA): an open-label, randomised controlled trial. Lancet. 2012 Jun 16;379(9833):2270-8.
- 44. Goke B, Gallwitz B, Eriksson J, Hellqvist A, Gause-Nilsson I, D1680C00001 Investigators. Saxagliptin is non-inferior to glipizide in patients with type 2 diabetes mellitus inadequately controlled on metformin alone: a 52-week randomised controlled trial. Int J Clin Pract. 2010 Nov;64(12):1619-31.
- 45. Kaku K. Efficacy and safety of therapy with metformin plus pioglitazone in the treatment of patients with type 2 diabetes: a double-blind, placebo-controlled, clinical trial. Curr Med Res Opin. 2009 May;25(5):1111-9.
- 46. Khanolkar MP, Morris RH, Thomas AW, Bolusani H, Roberts AW, Geen J, et al. Rosiglitazone produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus--an effect probably mediated by direct platelet PPARgamma activation. Atherosclerosis. 2008 Apr;197(2):718-24.
- 47. Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab. 2007 Mar;9(2):194-205.
- 48. Papathanassiou K, Naka KK, Kazakos N, Kanioglou C, Makriyiannis D, Pappas K, et al. Pioglitazone vs glimepiride: Differential effects on vascular endothelial function in patients with type 2 diabetes. Atherosclerosis. 2009;205(1):221-6.
- 49. Schernthaner G, Grimaldi A, Di Mario U, Drzewoski J, Kempler P, Kvapil M, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest. 2004 Aug;34(8):535-42.
- 50. Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: a nested case-control analysis. Diabetes Care. 2008 Nov;31(11):2086-91.
- 51. Gomez-Perez FJ, Fanghanel-Salmon G, Antonio Barbosa J, Montes-Villarreal J, Berry RA, Warsi G, et al. Efficacy and safety of rosiglitazone plus metformin in Mexicans with type 2 diabetes. Diabetes Metab Res Rev. 2002;18(2):127-34.

- 52. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009 Jun 5;373:2125-35.
- 53. Barnett AH, Burger J, Johns D, Brodows R, Kendall DM, Roberts A, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninferiority trial. Clin Ther. 2007 Nov;29(11):2333-48.
- 54. Blonde L, Dagogo-Jack S, Banerji MA, Pratley RE, Marcellari A, Braceras R, et al. Comparison of vildagliptin and thiazolidinedione as add-on therapy in patients inadequately controlled with metformin: results of the GALIANT trial a primary care, type 2 diabetes study. Diabetes Obes Metab. 2009 Oct;11(10):978-86.
- 55. Bolli G, Dotta F, Colin L, Minic B, Goodman M. Comparison of vildagliptin and pioglitazone in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Obes Metab. 2009 Jun;11(6):589-95.
- 56. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care [Internet]. 2007 Apr [cited 2013 May 15];30(4):890-5. Available from: <a href="http://care.diabetesjournals.org/cgi/reprint/30/4/890">http://care.diabetesjournals.org/cgi/reprint/30/4/890</a>
- 57. Charbonnel B, Schernthaner G, Brunetti P, Matthews DR, Urquhart R, Tan MH, et al. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes. Diabetologia. 2005 Jun;48(6):1093-104.
- 58. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care [Internet]. 2006 Dec [cited 2013 May 15];29(12):2638-43. Available from: <u>http://care.diabetesjournals.org/cgi/reprint/29/12/2638</u>
- 59. Charpentier G, Fleury F, Kabir M, Vaur L, Halimi S. Improved glycaemic control by addition of glimepiride to metformin monotherapy in type 2 diabetic patients. Diabet Med. 2001 Oct;18(10):828-34.
- 60. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care [Internet]. 2005 May [cited 2013 May 15];28(5):1092-100. Available from: <u>http://care.diabetesjournals.org/cgi/reprint/28/5/1092</u>
- 61. DeFronzo RA, Hissa MN, Garber AJ, Gross JL, Duan RY, Ravichandran S, et al. The efficacy and safety of saxagliptin when added to metformin therapy in patients with inadequately controlled type 2 diabetes on metformin alone. Diabetes Care. 2009 Sep;32(9):1649-55.
- 62. Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. Clin Ther. 2000;22(12):1395-409.

- 63. Fonseca V, Rosenstock J, Patwardhan R, Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA. 2000;283(13):1695-702.
- 64. Garber A, Klein E, Bruce S, Sankoh S, Mohideen P. Metformin-glibenclamide versus metformin plus rosiglitazone in patients with type 2 diabetes inadequately controlled on metformin monotherapy. Diabetes Obes Metab. 2006;8(2):156-63.
- 65. Goodman M, Thurston H, Penman J. Efficacy and tolerability of vildagliptin in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Horm Metab Res. 2009 May;41(5):368-73.
- 66. Halimi S, Le Berre MA, Grange V. Efficacy and safety of acarbose add-on therapy in the treatment of overweight patients with Type 2 diabetes inadequately controlled with metformin: a double-blind, placebo-controlled study. Diabetes Res Clin Pract. 2000 Sep;50(1):49-56.
- 67. Kilo C, Mezitis N, Jain R, Mersey J, McGill J, Raskin P. Starting patients with type 2 diabetes on insulin therapy using once-daily injections of biphasic insulin aspart 70/30, biphasic human insulin 70/30, or NPH insulin in combination with metformin. J Diabetes Complicat. 2003;17(6):307-13.
- 68. Kvapil M, Swatko A, Hilberg C, Shestakova M. Biphasic insulin aspart 30 plus metformin: an effective combination in type 2 diabetes. Diabetes Obes Metab. 2006 Jan;8(1):39-48.
- 69. Leiter LA, Harris SB, Chiasson JL, Edwards L, O'neill MC, Van DM. Efficacy and safety of rosiglitazone as monotherapy or in combination with metformin in primary care settings. Can J Diabetes. 2005;29(4):384-92.
- 70. Marre M, Howlett H, Lehert P, Allavoine T. Improved glycaemic control with metforminglibenclamide combined tablet therapy (Glucovance<sup>®</sup>) in Type 2 diabetic patients inadequately controlled on metformin. Diabet Med. 2002 Aug;19(8):673-80.
- 71. Marre M, Van Gaal L, Usadel KH, Ball M, Whatmough I, Guitard C. Nateglinide improves glycaemic control when added to metformin monotherapy: results of a randomized trial with type 2 diabetes patients. Diabetes Obes Metab. 2002 May;4(3):177-86.
- Moses R, Slobodniuk R, Boyages S, Colagiuri S, Kidson W, Carter J, et al. Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care [Internet]. 1999 Jan [cited 2013 May 15];22(1):119-24. Available from: <a href="http://care.diabetesjournals.org/cgi/reprint/22/1/119">http://care.diabetesjournals.org/cgi/reprint/22/1/119</a>
- 73. Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2006 Sep;114(8):417-23.
- 74. Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, Mitha IH, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes. Diabetes Care. 2009;32(1):84-90.

- 75. Phillips P, Karrasch J, Scott R, Wilson D, Moses R. Acarbose improves glycemic control in overweight type 2 diabetic patients insufficiently treated with metformin. Diabetes Care [Internet]. 2003 Feb [cited 2013 May 15];26(2):269-73. Available from: <a href="http://care.diabetesjournals.org/cgi/reprint/26/2/269">http://care.diabetesjournals.org/cgi/reprint/26/2/269</a>
- 76. Poon T, Nelson P, Shen L, Mihm M, Taylor K, Fineman M, et al. Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: a dose-ranging study. Diabetes Technol Ther. 2005 Jun;7(3):467-77.
- 77. Raskin PR, Hollander PA, Lewin A, Gabbay RA, Bode B, Garber AJ. Basal insulin or premix analogue therapy in type 2 diabetes patients. Eur J Intern Med. 2007;18(1):56-62.
- 78. Raz I, Chen Y, Wu M, Hussain S, Kaufman KD, Amatruda JM, et al. Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. Curr Med Res Opin. 2008 Feb;24(2):537-50.
- 79. Ristic S, Collober-Maugeais C, Cressier F, Tang P, Pecher E. Nateglinide or gliclazide in combination with metformin for treatment of patients with type 2 diabetes mellitus inadequately controlled on maximum doses of metformin alone: 1-year trial results. Diabetes Obes Metab. 2007 Jul;9(4):506-11.
- 80. Rodger NW, Chiasson JL, Josse RG, Hunt JA, Palmason C, Ross SA, et al. Clinical experience with acarbose: results of a Canadian multicentre study. Clin Invest Med. 1995 Aug;18(4):318-24.
- Rosenstock J, Brown A, Fischer J, Jain A, Littlejohn T, Nadeau D, et al. Efficacy and safety of acarbose in metformin-treated patients with type 2 diabetes. Diabetes Care [Internet]. 1998 Dec [cited 2013 May 15];21(12):2050-5. Available from: <u>http://care.diabetesjournals.org/cgi/reprint/21/12/2050</u>
- 82. Scott R, Loeys T, Davies MJ, Engel SS, Sitagliptin Study 801 Group. Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2008 Sep;10(10):959-69.
- 83. Umpierrez G, Issa M, Vlajnic A. Glimepiride versus pioglitazone combination therapy in subjects with type 2 diabetes inadequately controlled on metformin monotherapy: results of a randomized clinical trial. Curr Med Res Opin. 2006 Apr;22(4):751-9.
- 84. Van Gaal L, Maislos M, Schernthaner G, Rybka J, Segal P. Miglitol combined with metformin improves glycaemic control in type 2 diabetes. Diabetes Obes Metab. 2001 Oct;3(5):326-31.
- 85. Aschner P, Chan J, Owens DR, Picard S, Wang E, Dain MP, et al. Insulin glargine versus sitagliptin in insulin-naive patients with type 2 diabetes mellitus uncontrolled on metformin (EASIE): a multicentre, randomised open-label trial. Lancet. 2012 Jun 16;379(9833):2262-9.
- 86. Bergenstal RM, Wysham C, MacConell L, Malloy J, Walsh B, Yan P, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet. 2010 Aug 7;376(9739):431-9.

- 87. Diamant M, Van GL, Stranks S, Northrup J, Cao D, Taylor K, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010 Jun 26;375(9733):2234-43.
- 88. Filozof C, Gautier JF. A comparison of efficacy and safety of vildagliptin and gliclazide in combination with metformin in patients with Type 2 diabetes inadequately controlled with metformin alone: a 52-week, randomized study. Diabet Med. 2010 Mar;27(3):318-26.
- 89. Forst T, Uhlig-Laske B, Ring A, Graefe-Mody U, Friedrich C, Herbach K, et al. Linagliptin (BI 1356), a potent and selective DPP-4 inhibitor, is safe and efficacious in combination with metformin in patients with inadequately controlled Type 2 diabetes. Diabet Med. 2010 Dec;27(12):1409-19.
- Pan C, Xing X, Han P, Zheng S, Ma J, Liu J, et al. Efficacy and tolerability of vildagliptin as add-on therapy to metformin in Chinese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2012 Aug;14(8):737-44. Epub ahead of print 2012 Apr 1.
- 91. Pfutzner A, Schondorf T, Tschope D, Lobmann R, Merke J, Muller J, et al. PIOfix-study: effects of pioglitazone/metformin fixed combination in comparison with a combination of metformin with glimepiride on diabetic dyslipidemia. Diabetes Technol Ther. 2011 Jun;13(6):637-43.
- 92. Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, Sebastiano F, et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 2010 Apr 24;375(9724):1447-56.
- 93. Taskinen MR, Rosenstock J, Tamminen I, Kubiak R, Patel S, Dugi KA, et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011 Jan;13(1):65-74.
- 94. Yang W, Chen L, Ji Q, Liu X, Ma J, Tandon N, et al. Liraglutide provides similar glycaemic control as glimepiride (both in combination with metformin) and reduces body weight and systolic blood pressure in Asian population with type 2 diabetes from China, South Korea and India: a 16-week, randomized, double-blind, active control trial(\*). Diabetes Obes Metab. 2011 Jan;13(1):81-8.
- 95. Yang W, Pan CY, Tou C, Zhao J, Gause-Nilsson I. Efficacy and safety of saxagliptin added to metformin in Asian people with type 2 diabetes mellitus: a randomized controlled trial. Diabetes Res Clin Pract. 2011 Nov;94(2):217-24.
- 96. Yang W, Guan Y, Shentu Y, Li Z, Johnson-Levonas AO, Engel SS, et al. The addition of sitagliptin to ongoing metformin therapy significantly improves glycemic control in Chinese patients with type 2 diabetes. J Diabetes. 2012 Sep;4(3):227-37.
- 97. Gao Y, Yoon KH, Chuang LM, Mohan V, Ning G, Shah S, et al. Efficacy and safety of exenatide in patients of Asian descent with type 2 diabetes inadequately controlled with metformin or metformin and a sulphonylurea. Diabetes Res Clin Pract. 2009 Jan;83(1):69-76.
- 98. Matthews DR, Charbonnel BH, Hanefeld M, Brunetti P, Schernthaner G. Long-term therapy with addition of pioglitazone to metformin compared with the addition of gliclazide to metformin in

patients with type 2 diabetes: a randomized, comparative study. Diabetes Metab Res Rev. 2005;21(2):167-74.

- Cho YM, Koo BK, Son HY, Lee KW, Son HS, Choi DS, et al. Effect of the combination of mitiglinide and metformin on glycemic control in patients with type 2 diabetes mellitus. J Diabetes Investig. 2010;1(4):143-8.
- 100. Ahren B, Gomis R, Standl E, Mills D, Schweizer A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care [Internet]. 2004 Dec [cited 2013 May 15];27(12):2874-80. Available from: http://care.diabetesjournals.org/cgi/reprint/27/12/2874
- 101. Bolli G, Dotta F, Rochotte E, Cohen SE. Efficacy and tolerability of vildagliptin vs. pioglitazone when added to metformin: a 24-week, randomized, double-blind study. Diabetes Obes Metab. 2008 Jan;10(1):82-90.
- 102. Leese GP, Wang J, Broomhall J, Kelly P, Marsden A, Morrison W, et al. Frequency of severe hypoglycemia requiring emergency treatment in type 1 and type 2 diabetes: a population-based study of health service resource use. Diabetes Care [Internet]. 2003 Apr [cited 2013 May 15];26(4):1176-80. Available from: <u>http://care.diabetesjournals.org/cgi/reprint/26/4/1176</u>
- 103. Mount Hood 4 Modeling Group. Computer modeling of diabetes and its complications: a report on the fourth Mount Hood Challenge Meeting. Diabetes Care [Internet]. 2007 [cited 2013 May 15];30(6):1638-46. Available from: <a href="http://care.diabetesjournals.org/cgi/reprint/30/6/1638">http://care.diabetesjournals.org/cgi/reprint/30/6/1638</a>
- 104. ATC/DDD index 2010 [Internet]. Oslo: WHO Collaborating Centre for Drug Statistics Methodology, Norwegian Institute of Public Health; 2009. [cited 2013 May 15]. Available from: <u>http://www.whocc.no/atc\_ddd\_index/</u>
- 105. Gomes T, Juurlink DN, Shah BR, Paterson JM, Mamdani M. Blood glucose test strip use: patterns, costs, and potential savings associated with reduced testing [Internet]. Toronto: Institute for Clinical Evaluative Sciences; 2009. [cited 2013 May 15]. (ICES Investigative Report). Available from: <a href="http://www.ices.on.ca/file/Blood%20Glucose%20Test%20Strip\_Dec2009.pdf">http://www.ices.on.ca/file/Blood%20Glucose%20Test%20Strip\_Dec2009.pdf</a>
- 106. O'Reilly D, Hopkins R, Blackhouse G, Clarke P, Hux J, Guan J, et al. Development of an Ontario Diabetes Economic Model (ODEM) and application to a multidisciplinary primary care diabetes management program [Internet]. Hamilton (ON): Program for Assessment of Technology in Health (PATH); 2006. 120 p. [cited 2013 May 15]. Available from: <u>http://www.pathhta.ca/Libraries/Reports/Development of an Ontario Diabetes Economic Model ODEM and Ap plication to a Multidisciplinary Primary Care Diabetes Management Program.sflb.ashx</u>
- 107. Saskatchewan Health. Online formulary [database on the Internet]. Regina: Government of Saskatchewan, Drug Plan and Extended Benefits Branch; 2012 May 1 [cited 2013 May 15]. Available from: <u>http://formulary.drugplan.health.gov.sk.ca/</u>
- 108. National Collaborating Centre for Chronic Conditions. Type 2 diabetes: the management of type 2 diabetes [Internet]. London: National Institute for Health and Clinical Excellence; 2009. (NICE clinical guideline 87). [cited 2013 May 15]. Available from: http://www.nice.org.uk/nicemedia/pdf/CG87NICEGuideline.pdf

- 109. Health costing in Alberta: 2006 annual report [Internet]. Edmonton: Alberta Health and Wellness;
   2006 Jul. 323 p. [cited 2013 Mar 8]. Available from: <u>http://www.health.alberta.ca/documents/Case-Cost-Hospital-04-05.pdf</u>
- 110. Sullivan PW, Lawrence WF, Ghushchyan V. A national catalog of preference-based scores for chronic conditions in the United States. Med Care. 2005 Jul;43(7):736-49.
- 111. Sullivan PW, Ghushchyan V. Preference-based EQ-5D index scores for chronic conditions in the United States. Med Decis Making. 2006 Jul;26(4):410-20.
- 112. Agency for Healthcare Research and Quality [Internet]. Rockville (MD): AHRQ. Calculating the U.S. population-based EQ-5D index score; 2005 Aug [cited 2013 Mar 8]. Available from: http://www.ahrq.gov/legacy/rice/EQ5Dscore.htm
- 113. Ahern J, Tamborlane WV. Steps to reduce the risks of severe hypoglycemia. Diabetes Spectr [Internet]. 1997 [cited 2013 May 15];10(1):39-41. Available from: <u>http://journal.diabetes.org/diabetesspectrum/97v10n01/pg39.htm</u>
- 114. National Collaborating Centre for Primary Care. Obesity: the prevention, identification, assessment and management of overweight and obesity in adults and children [Internet]. London: National Institute for Health and Clinical Excellence (NICE); 2006. (NICE clinical guideline 43). [cited 2013 May 15]. Available from: <u>http://guidance.nice.org.uk/CG43</u>
- 115. Macran S. The relationship between body mass index and health-related quality of life [Internet]. York (UK): Outcomes Research Group, Centre for Health Economics; 2004. (Discussion paper 190). [cited 2013 May 15]. Available from: <u>http://www.york.ac.uk/inst/che/pdf/DP190.pdf</u>
- 116. National Institute for Clinical Excellence. Guidance on the use of long-acting insulin analogues for the treatment of diabetes-insuling glargine [Internet]. London: NICE; 2002 Dec. 24 p. [cited 2013 May 15]. (Technology appraisal guidance no. 53). Available from: <a href="http://www.nice.org.uk/download.aspx?o=TA053guidance">http://www.nice.org.uk/download.aspx?o=TA053guidance</a> Review date: 2005.
- Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of Noninsulin Antidiabetic Drugs Added to Metformin Therapy on Glycemic Control, Weight Gain, and Hypoglycemia in Type 2 Diabetes. JAMA. 2010;303(14):1410-8.
- 118. Liu SC, Tu YK, Chien MN, Chien KL. Effect of antidiabetic agents added to metformin on glycaemic control, hypoglycaemia and weight change in patients with type 2 diabetes: a network meta-analysis. Diabetes Obes Metab. 2012 Apr 9. Epub ahead of print.
- 119. Monami M, Lamanna C, Marchionni N, Mannucci E. Comparison of different drugs as add-on treatments to metformin in type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2008 Feb;79(2):196-203.
- Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med [Internet]. 2007 Jul 16 [cited 2013 May 15];147(6):386-99. Available from: <a href="http://www.annals.org/cgi/reprint/147/6/386.pdf">http://www.annals.org/cgi/reprint/147/6/386.pdf</a>

- 121. Selvin E, Bolen S, Yeh HC, Wiley C, Wilson LM, Marinopoulos SS, et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med. 2008 Oct 27;168(19):2070-80.
- 122. WHO Consultation on Obesity (1999: Geneva, Switzerland). Obesity: preventing and managing the gloabal epidemic: report of a WHO consultation [Internet]. Geneva: World Health Organization (WHO); 2000. (WHO technical report series; 894). [cited 2013 May 15]. Available from: <a href="http://whglibdoc.who.int/trs/WHO\_TRS\_894.pdf">http://whglibdoc.who.int/trs/WHO\_TRS\_894.pdf</a>
- 123. Wing RR, Koeske R, Epstein LH, Nowalk MP, Gooding W, Becker D. Long-term effects of modest weight loss in type II diabetic patients. Arch Intern Med. 1987 Oct;147(10):1749-53.
- 124. Fujioka K, Seaton TB, Rowe E, Jelinek CA, Raskin P, Lebovitz HE, et al. Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2000 Jun;2(3):175-87.
- 125. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009 Nov 14;374(9702):1677-86.
- 126. Hakim Z, Wolf A, Garrison LP. Estimating the effect of changes in body mass index on health state preferences. PharmacoEconomics. 2002;20(6):393-404.
- 127. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008 Jun 12;358(24):2560-72.
- 128. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180(1):32-9.
- 129. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2008 May;31(5):845-51.
- Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med [Internet]. 2006 Dec 7 [cited 2013 May 15];355(23):2427-43. Available from: <u>http://content.nejm.org/cgi/reprint/355/23/2427.pdf</u>
- 131. Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008 Apr 28;168(8):820-5.
- 132. Jones SG, Momin SR, Good MW, Shea TK, Patric K. Distal upper and lower limb fractures associated with thiazolidinedione use. Am J Manag Care. 2009 Aug;15(8):491-6.
- 133. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298(10):1180-8.
- 134. Colmers IN, Bowker SL, Majumdar SR, Johnson JA. Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis. CMAJ [Internet]. 2012 Sep 4 [cited 2013

May 15];184(12):E675-E683. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447078

- 135. Extended use of thiazolidinediones associated with increased bladder cancer risk in cohort study. ASCO Daily News [abstract on the Internet]. 2012 Nov 18 [cited 2013 May 15]. Available from: <u>http://chicago2012.asco.org/ASCODailyNews/Abstract1503.aspx</u> (Presented at ASCO Annual 2012 Meeting; 2012 Jun 1-5; Chicago). Abstract 1503.
- 136. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 Feb 29 -. Identifier NCT01179048, Liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results - A long term evaluation (LEADER<sup>®</sup>); 2010 Aug 6 [cited 2013 Jan 7; Updated 2012 Nov 14]. Available from: <u>http://clinicaltrials.gov/ct2/show/NCT01179048</u>
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 Feb 29 -. Identifier NCT01107886, Does saxagliptin reduce the risk of cardiovascular events when used alone or added to other diabetes medications (SAVOR- TIMI 53); 2010 Mar 25 [cited 2013 Jan 7; Updated 2012 Nov 19]. Available from: http://clinicaltrials.gov/ct2/show/NCT01107886
- 138. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 Feb 29 -. Identifier NCT0114438, exenatide study of cardiovascular event lowering trial (EXSCEL): a trial to evaluate cardiovascular outcomes after treatment with exenatide once weekly in patients with type 2 diabetes mellitus; 2010 Jun 10 [cited 2013 Jan 7; Updated 2012 Jul 17]. Available from: <u>http://clinicaltrials.gov/ct2/show/NCT01144338</u>
- 139. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 Feb 29 -. Identifier NCT01243424, CAROLINA: cardiovascular outcome study of linagliptin versus glimepiride in patients with type 2 diabetes; 2010 Nov 17 [cited 2013 May 15; Updated 2012 Dec 13]. Available from: <u>http://clinicaltrials.gov/ct2/show/NCT01243424</u>
- 140. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000 Feb 29 -.
   Identifier NCT00790205, Sitagliptin cardiovascular outcome study (0431-082 AM1) (TECOS); 2008
   Nov 11 [cited 2013 Jan 7; Updated 2012 Aug 14]. Available from: <u>http://clinicaltrials.gov/ct2/show/NCT00790205</u>
- 141. Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Internal Medicine. 2013 Feb 25;1-6.
- 142. Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Jain A, et al. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: a retrospective analysis. Acta Diabetol. 2009 Jun;46(2):145-54.
- 143. Evans JM, Ogston SA, Emslie-Smith A, Morris AD. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia. 2006 May;49(5):930-6.

- 144. Roumie CL, Hung AM, Greevy RA, Grijalva CG, Liu X, Murff HJ, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012 Nov 6;157(9):601-10.
- 145. Lassere MN, Johnson KR, Boers M, Tugwell P, Brooks P, Simon L, et al. Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema. J Rheumatol. 2007 Mar;34(3):607-15.
- 146. Rosen CJ. The rosiglitazone story--lessons from an FDA Advisory Committee meeting. N Engl J Med. 2007 Aug 30;357(9):844-6.
- 147. Singh SR, Ahmad F, Lal A, Yu C, Bai Z, Bennett H. Efficacy and safety of insulin analogues for the management of diabetes mellitus: a meta-analysis. CMAJ. 2009 Feb 17;180(4):385-97.
- 148. Canadian Agency for Drugs and Technologies in Health. Long-acting insulin analogues for the treatment of diabetes mellitus: meta-analyses of clinical outcomes [Internet]. Ottawa: The Agency; 2008 Mar. [cited 2013 Mar 8]. (Optimal therapy report; vol. 2 no. 1). Available from: <a href="http://cadth.ca/media/compus/reports/compus\_Long-Acting-Insulin-Analogs-Report\_Clinical-Outcomes.pdf">http://cadth.ca/media/compus/reports/compus\_Long-Acting-Insulin-Analogs-Report\_Clinical-Outcomes.pdf</a>
- 149. Derosa G, Franzetti IG, Querci F, Carbone A, Ciccarelli L, Piccinni MN, et al. Exenatide plus metformin compared with metformin alone on beta-cell function in patients with Type 2 diabetes. Diabet Med. 2012 Apr 30.
- 150. Feinglos M, Dailey G, Cefalu W, Osei K, Tayek J, Canovatchel W, et al. Effect on glycemic control of the addition of 2.5 mg glipizide GITS to metformin in patients with T2DM. Diabetes Res Clin Pract. 2005 May;68(2):167-75.
- 151. Frid A, Nauck MA, Hermansen K, Kolotkin RL, Hammer M, Zdrav-Kovic M, et al. Evaluation of patient reported outcomes in subjects with type 2 diabetes treated with the once-daily human GLP-1 analog liraglutide or glimepiride both as add-on to metformin. Diabetes. 2008;57(Suppl 1):A574-A575, JUN.
- 152. Hamann A, Garcia-Puig J, Paul G, Donaldson J, Stewart M. Comparison of fixed-dose rosiglitazone/metformin combination therapy with sulphonylurea plus metformin in overweight individuals with Type 2 diabetes inadequately controlled on metformin alone. Exp Clin Endocrinol Diabetes. 2008 Jan;116(1):6-13.
- 153. Ristic S, Collober-Maugeais C, Pecher E, Cressier F. Comparison of nateglinide and gliclazide in combination with metformin, for treatment of patients with type 2 diabetes mellitus inadequately controlled on maximum doses of metformin alone. Diabet Med [Internet]. 2006 Jul [cited 2013 May 15];23(7):757-62. Available from: http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1569640&blobtype=pdf
- 154. Trautmann M, Burger J, Johns D, Brodows R, Okerson T, Roberts A, et al. Less hypoglycemia with exenatide versus insulin glargine, despite similar Hba<sub>1c</sub> improvement, in patients with T2dm adjunctively treated with metformin. Diabetes. 2007;56(Suppl 1):A45, JUN.
- 155. Wang JS, Lin SD, Lee WJ, Su SL, Lee IT, Tu ST, et al. Effects of acarbose versus glibenclamide on glycemic excursion and oxidative stress in type 2 diabetic patients inadequately controlled by

metformin: a 24-week, randomized, open-label, parallel-group comparison. Clin Ther. 2011 Dec;33(12):1932-42.

- 156. Wolever TM, Chiasson JL, Josse RG, Hunt JA, Palmason C, Rodger NW, et al. Small weight loss on long-term acarbose therapy with no change in dietary pattern or nutrient intake of individuals with non-insulin-dependent diabetes. Int J Obes Relat Metab Disord. 1997 Sep;21(9):756-63.
- 157. Derosa G, Mereu R, D'Angelo A, Salvadeo SA, Ferrari I, Fogari E, et al. Effect of pioglitazone and acarbose on endothelial inflammation biomarkers during oral glucose tolerance test in diabetic patients treated with sulphonylureas and metformin. J Clin Pharm Ther. 2010 Oct;35(5):565-79.
- 158. Diamant M, Van GL, Stranks S, Guerci B, MacConell L, Haber H, et al. Safety and efficacy of onceweekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes over 84 weeks. Diabetes Care. 2012 Apr;35(4):683-9.
- 159. Bunck MC, Corner A, Eliasson B, Heine RJ, Shaginian RM, Wu Y, et al. One-year treatment with exenatide vs. insulin glargine: effects on postprandial glycemia, lipid profiles, and oxidative stress. Atherosclerosis. 2010 Sep;212(1):223-9.
- 160. Forst T, Weber MM, Lobig M, Lehmann U, Muller J, Hohberg C, et al. Pioglitazone in addition to metformin improves erythrocyte deformability in patients with Type 2 diabetes mellitus. Clin Sci (Colch). 2010 Oct;119(8):345-51.
- 161. Seck T, Nauck M, Sheng D, Sunga S, Davies MJ, Stein PP, et al. Safety and efficacy of treatment with sitagliptin or glipizide in patients with type 2 diabetes inadequately controlled on metformin: a 2-year study. Int J Clin Pract. 2010 Apr;64(5):562-76.
- 162. Pratley R, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: a randomised, parallel-group, open-label trial. Int J Clin Pract [Internet]. 2011 Apr [cited 2013 May 15];65(4):397-407. Available from: <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085127</u>
- 163. Davies M, Pratley R, Hammer M, Thomsen AB, Cuddihy R. Liraglutide improves treatment satisfaction in people with Type 2 diabetes compared with sitagliptin, each as an add on to metformin. Diabet Med. 2011 Mar;28(3):333-7.
- 164. Krobot KJ, Ferrante SA, Davies MJ, Seck T, Meininger GE, Williams-Herman D, et al. Lower risk of hypoglycemia with sitagliptin compared to glipizide when either is added to metformin therapy: a pre-specified analysis adjusting for the most recently measured HbA(1c) value. Curr Med Res Opin. 2012 Aug;28(8):1281-7.
- 165. Berne C, the Orlistat Swedish Type 2 diabetes Study Group. A randomized study of orlistat in combination with a weight management programme in obese patients with Type 2 diabetes treated with metformin. Diabet Med. 2005 May;22(5):612-8.
- 166. Home PD, Jones NP, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, et al. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med. 2007;24(6):626-34.

- 167. McNulty SJ, Ur E, Williams G, Multicenter Sibutramine Study Group. A randomized trial of sibutramine in the management of obese type 2 diabetic patients treated with metformin. Diabetes Care [Internet]. 2003 Jan [cited 2013 May 15];26(1):125-31. Available from: <u>http://care.diabetesjournals.org/cgi/reprint/26/1/125</u>
- 168. Raskin P, Allen E, Hollander P, Lewin A, Gabbay RA, Hu P, et al. Initiating insulin therapy in type 2 Diabetes: a comparison of biphasic and basal insulin analogs. Diabetes Care [Internet]. 2005 Feb [cited 2013 May 15];28(2):260-5. Available from: <a href="http://care.diabetesjournals.org/cgi/reprint/28/2/260">http://care.diabetesjournals.org/cgi/reprint/28/2/260</a>
- 169. Brod M, Christensen T, Thomsen TL, Bushnell DM. The impact of non-severe hypoglycemic events on work productivity and diabetes management. Value Health. 2011 Jul;14(5):665-71.

## **APPENDIX 1: LITERATURE SEARCH STRATEGY**

| OVERV     |          |                                                                                                                          |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------|
| Interface |          | Ovid                                                                                                                     |
| Database  | es:      | EBM Reviews - Cochrane Central Register of Controlled Trials                                                             |
|           |          | EBM Reviews - Cochrane Database of Systematic Reviews                                                                    |
|           |          | EBM Reviews - Database of Abstracts of Reviews of Effects                                                                |
|           |          | EBM Reviews - Health Technology Assessment<br>EBM Reviews - NHS Economic Evaluation Database                             |
|           |          | EMBASE                                                                                                                   |
|           |          | Ovid MEDLINE                                                                                                             |
|           |          | Ovid MEDLINE In-Process & Other Non-Indexed Citations                                                                    |
|           |          | <b>Note:</b> Subject headings have been customized for each database. Duplicates between databases were removed in Ovid. |
| Date of S | Search:  | May 7, 2012                                                                                                              |
| Alerts:   |          | Monthly search updates ran until publication of the final report.                                                        |
| Study Ty  | pes:     | Systematic reviews; meta-analyses; technology assessments; randomized controlled trials; and economic literature.        |
| Limits:   |          | Publication years January 1, 2009 onwards                                                                                |
|           |          | English language                                                                                                         |
|           |          | Humans                                                                                                                   |
| SYNTA     | X GUIDE  |                                                                                                                          |
| /         | At the   | end of a phrase, searches the phrase as a subject heading                                                                |
| .sh       | At the   | end of a phrase, searches the phrase as a subject heading                                                                |
| MeSH      | Medica   | al Subject Heading                                                                                                       |
| fs        | Floatin  | g subheading                                                                                                             |
| exp       | Explod   | e a subject heading                                                                                                      |
| *         | Before   | a word, indicates that the marked subject heading is a primary topic;                                                    |
|           | or, afte | er a word, a truncation symbol (wildcard) to retrieve plurals or varying endings                                         |
| #         | Trunca   | tion symbol for one character                                                                                            |
| ?         | Trunca   | tion symbol for one or no characters only                                                                                |
| ADJ       | Require  | es words are adjacent to each other (in any order)                                                                       |
| ADJ#      | Adjace   | ncy within # number of words (in any order)                                                                              |
| .ti       | Title    |                                                                                                                          |
| .ab       | Abstra   | ct                                                                                                                       |
| .hw       | Headin   | g Word; usually includes subject headings and controlled vocabulary                                                      |
| .pt       | Publica  | ation type                                                                                                               |
| .rn       |          | gistry number                                                                                                            |
|           |          |                                                                                                                          |

| Ovid N   | 1EDLINE & Embase Strategy                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------|
| #        | Strategy                                                                                                   |
| 1        | Hypoglycemic drugs/                                                                                        |
| 2        | ((Antidiabetic or anti diabetic or antihyperglycemic or anti-hyperglycemic or oral hypoglycemic or anti-   |
|          | diabetes or antidiabetes) adj (agent or agents or drug or drugs or compound or compounds)).ti,ab.          |
| 3        | Thiazolidinediones/                                                                                        |
| 4        | (glitazone* or thiazolidinedione* or pioglitazone* or rosiglitazone* or actos or avandia or avandamet or   |
|          | avandaryl).ti,ab.                                                                                          |
| 5        | (122320-73-4 or 155141-29-0).rn.                                                                           |
| 6        | Dipeptidyl-Peptidase IV Inhibitors/                                                                        |
| 7        | (sitagliptin or Januvia or Janumet or vildagliptin or Galvus or gliptin or incretin agent* or exenatide or |
|          | Byetta or Bydureon or Exendin-4 or liraglutide or Victoza).ti,ab.                                          |
| 8        | (486460-32-6 or 274901-16-5 or 141758-74-9 or 204656-20-2).rn.                                             |
| 9        | (taspoglutide or R-1583 or R1583 or BIM51077 or BIM-51077 or lixisenatide or AVE0010 or AVE-0010 or        |
|          | albiglutide).ti,ab,rn.                                                                                     |
| 10       | 275371-94-3.rn.                                                                                            |
| 11       | (saxagliptin or Onglyza or bms 477118 or bms-477118 or bms477118 or 3-hydroxyadamantylglycine-4,5-         |
|          | methanoprolinenitrile).ti,ab,rn.                                                                           |
| 12       | (361442-04-811 or 945667-22-111 or 361442-04-8 or 945667-22-1).rn.                                         |
| 13       | (linagliptin or Tradjenta or Trajenta or BI-1356 or alogliptin or SYR-322 or SYR322 or Nesina or           |
|          | dutogliptin).ti,ab,rn.                                                                                     |
| 14       | (668270-12-0 or 850649-62-6 or 852329-66-9).rn.                                                            |
| 15       | (dpp adj IV adj inhibitor*).ti,ab.                                                                         |
| 16       | (Dipeptidyl-Peptidase adj IV adj inhibitor*).ti,ab.                                                        |
| 17       | DPP-4 inhibitors.ti,ab.                                                                                    |
| 18       | dipeptidyl peptidase-4 inhibitors.ti,ab.                                                                   |
| 19       | exp Sulfonylurea Compounds/                                                                                |
| 20       | (sulfonylurea* or tolbutamide or Orinase or glyconon or tolazamide or Tolinase or chlorpropamide or        |
|          | Diabinese or glymese or glipizide or Glucotrol or glyburide or glibenclamide or glybenclamide or Diabeta   |
|          | or Micronase or Glynase or gen-glybe or euglucon or glimepiride or Amaryl or gliclazide or Diamicron or    |
| 21       | diaglyk or glibenese or minodiab or gen-gliclazide).ti,ab.                                                 |
| 21       | (64-77-7 or 1156-19-0 or 94-20-2 or 29094-61-9 or 10238-21-8 or 93479-97-1 or 21187-98-4).rn.              |
| 22       | alpha-Glucosidases/ai                                                                                      |
| 23       | (acarbose or glucobay or precose or prandase or akarbose or miglitol* or glyset or diastabol or            |
| 24       | voglibose).ti,ab.<br>(56180-94-0 or 72432-03-2 or 83480-29-9).rn.                                          |
| 24<br>25 | (alph* adj glucos* adj inhibit*) or (alf* adj glucos* adj inhibit*)).ti,ab.                                |
| 25       | Acarbose/                                                                                                  |
| 20       | Lipase/ai                                                                                                  |
| 27       | (Orlistat or Xenical or Tetrahydrolipstatin or Sibutramine or meridia).ti,ab.                              |
| 28       | (96829-58-2 or 106650-56-0).rn.                                                                            |
| 30       | (lipase adj inhibit*).ti,ab.                                                                               |
| 30       | (repaglinide or nateglinide or Meglitinide* or prandin or gluconorm or starlix or novonorm).ti,ab.         |
| 31       | (135062-02-1 or 105816-04-4).rn.                                                                           |
| 33       | Amyloid/                                                                                                   |
| 34       | (Pramlintide or symlin).ti,ab.                                                                             |
| 35       | (amylin adj analog*).ti,ab.                                                                                |
| 36       | 151126-32-8.rn.                                                                                            |
| 37       | exp insulin/                                                                                               |
| 38       | (long acting insulin* or long acting analog* or slow* acting insulin* or slow* acting analog*).ti,ab.      |
| 50       | Lions secting instantion of forg decing analog of slow decing instantion slow decing analog jutjab.        |

| Ovid N | IEDLINE & Embase Strategy                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------|
| #      | Strategy                                                                                                    |
| 39     | (glargine or Lantus or Optisulin or hoe 901 or 160337-95-1).ti,ab,rn.                                       |
| 40     | (detemir or determir or Levemir or nn 304 or 169148-63-4).ti,ab,rn.                                         |
| 41     | (nph insulin or humulin or novolin).ti,ab.                                                                  |
| 42     | 11061-68-0.rn.                                                                                              |
| 43     | (short acting insulin* or quick acting insulin* or rapid acting insulin* or rapidly acting insulin* or fast |
|        | acting insulin* or quick acting analog* or rapid acting analog* or rapidly acting analog* or short acting   |
|        | analog* or fast acting analog*).ti,ab.                                                                      |
| 44     | (Lispro or Lyspro or Humalog or Liprolog or 133107-64-9).ti,ab,rn.                                          |
| 45     | (Insulin Aspart or 116094-23-6 or NovoLog or NovoRapid or NovoMix).ti,ab,rn.                                |
| 46     | (Glulisine or 207748-29-6 or Apidra).ti,ab,rn.                                                              |
| 47     | or/1-46                                                                                                     |
| 48     | exp Diabetes Mellitus, Type 2/                                                                              |
| 49     | Diabetes mellitus/                                                                                          |
| 50     | (adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or       |
|        | stable or type 2 or type II or lipoatrophic) adj3 diabet\$).ti,ab.                                          |
| 51     | (Mody or niddm or t2dm).ti,ab.                                                                              |
| 52     | or/48-51                                                                                                    |
| 53     | Metformin/                                                                                                  |
| 54     | Metformin.ti,ab.                                                                                            |
| 55     | (dimethylguanylguanidine or dimethylbiguanidine or glucophage).ti,ab.                                       |
| 56     | (657-24-9 or 1115-70-4).rn.                                                                                 |
| 57     | (Glycon or Fortamet or Riomet or Venez or Diaformina or Dimefor or Glafornil or Glucaminol or               |
| 07     | Glucofage or Diabex or Diaformin or Glucohexal or Glucomet or Novomet or Metomin or Glucamet or             |
|        | Metsol or Orabet).ti,ab.                                                                                    |
| 58     | (apo-metformin or apotex or genmetformin or glucophage or glumetza or novometformin or nu-                  |
|        | metformin or pms-metformin or ran-metformin or ratio-metformin or rhoxal-metformin or sandoz                |
|        | metformin).ti,ab.                                                                                           |
| 59     | (Aron or Diabetosan or Diabex or Diformin or Diformin Retard or Dimethylbiguanide or Dmgg or                |
|        | Fluamine or Fortamet or Gliguanid or Glucoformin or Haurymellin or La 6023 or La6023 or Meguan or           |
|        | Mellittin or Metaformin or Methformin or Metiguanide or Metphormin or Dimethylguanylguanide or              |
|        | Nndg or Dimethylbiguanide or Dimethyl Biguanidine or Dimethylbiguanidine or                                 |
|        | Dimethyldiguanide).ti,ab.                                                                                   |
| 60     | or/53-59                                                                                                    |
| 61     | 47 and 52 and 60                                                                                            |
| 62     | 61 use pmez                                                                                                 |
| 63     | Antidiabetic agent/                                                                                         |
| 64     | Oral Antidiabetic agent/                                                                                    |
| 65     | ((Antidiabetic or anti diabetic or antihyperglycemic or anti-hyperglycemic or oral hypoglycemic or anti-    |
|        | diabetes or antidiabetes) adj (agent or agents or drug or drugs or compound or compounds)).ti,ab.           |
| 66     | exp *glitazone derivative/                                                                                  |
| 67     | (glitazone* or thiazolidinedione* or pioglitazone or rosiglitazone or actos or avandia or avandamet or      |
|        | avandaryl).ti,ab.                                                                                           |
| 68     | (122320-73-4 or 155141-29-0).rn.                                                                            |
| 69     | exp *Dipeptidyl Peptidase IV Inhibitor/                                                                     |
| 70     | (sitagliptin or Januvia or Janumet or vildagliptin or Galvus or gliptin or incretin agent* or exenatide or  |
|        | Byetta or Bydureon or Exendin-4 or liraglutide or Victoza).ti,ab.                                           |
| 71     | (486460-32-6 or 274901-16-5 or 141758-74-9 or 204656-20-2).rn.                                              |
| 72     | (taspoglutide or R-1583 or R1583 or BIM51077 or BIM-51077 or lixisenatide or AVE0010 or AVE-0010 or         |
|        | albiglutide).ti,ab,rn.                                                                                      |

| Ovid N | IEDLINE & Embase Strategy                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------|
| #      | Strategy                                                                                                    |
| 73     | 275371-94-3.rn.                                                                                             |
| 74     | (saxagliptin or Onglyza or bms 477118 or bms-477118 or bms477118 or 3-hydroxyadamantylglycine-4,5-          |
|        | methanoprolinenitrile).ti,ab,rn.                                                                            |
| 75     | (361442-04-811 or 945667-22-111 or 361442-04-8 or 945667-22-1).rn.                                          |
| 76     | (linagliptin or Tradjenta or Trajenta or BI-1356 or alogliptin or SYR-322 or SYR322 or Nesina or            |
|        | dutogliptin).ti,ab.                                                                                         |
| 77     | (668270-12-0 or 850649-62-6 or 852329-66-9).rn.                                                             |
| 78     | (dpp adj IV adj inhibitor*).ti,ab.                                                                          |
| 79     | (Dipeptidyl-Peptidase adj IV adj inhibitor*).ti,ab.                                                         |
| 80     | DPP-4 inhibitors.ti,ab.                                                                                     |
| 81     | dipeptidyl peptidase-4 inhibitors.ti,ab.                                                                    |
| 82     | exp *sulfonylurea derivative/                                                                               |
| 83     | (sulfonylurea* or tolbutamide or Orinase or glyconon or tolazamide or Tolinase or chlorpropamide or         |
|        | Diabinese or glymese or glipizide or Glucotrol or glyburide or glibenclamide or glybenclamide or Diabeta    |
|        | or Micronase or Glynase or gen-glybe or euglucon or glimepiride or Amaryl or gliclazide or Diamicron or     |
|        | diaglyk or glibenese or minodiab or gen-gliclazide).ti,ab.                                                  |
| 84     | (64-77-7 or 1156-19-0 or 94-20-2 or 29094-61-9 or 10238-21-8 or 93479-97-1 or 21187-98-4).rn.               |
| 85     | exp *"Alpha Glucosidase Inhibitor"/                                                                         |
| 86     | (acarbose or glucobay or precose or prandase or akarbose or miglitol* or glyset or diastabol or             |
|        | voglibose).ti,ab.                                                                                           |
| 87     | (56180-94-0 or 72432-03-2 or 83480-29-9).rn.                                                                |
| 88     | ((alph* adj glucos* adj inhibit*) or (alf* adj glucos* adj inhibit*)).ti,ab.                                |
| 89     | Lipase inhibitor/                                                                                           |
| 90     | *Tetrahydrolipstatin/                                                                                       |
| 91     | *Sibutramine/                                                                                               |
| 92     | (Orlistat or Xenical or Tetrahydrolipstatin or Sibutramine or meridia).ti,ab.                               |
| 93     | (96829-58-2 or 106650-56-0).rn.                                                                             |
| 94     | (lipase adj inhibit*).ti,ab.                                                                                |
| 95     | *Meglitinide/                                                                                               |
| 96     | *Repaglinide/                                                                                               |
| 97     | *Nateglinide/                                                                                               |
| 98     | (repaglinide or nateglinide or Meglitinide* or prandin or gluconorm or starlix or novonorm).ti,ab.          |
| 99     | (135062-02-1 or 105816-04-4).rn.                                                                            |
| 100    | *Pramlintide/                                                                                               |
| 101    | (Pramlintide or symlin).ti,ab.                                                                              |
| 102    | (amylin adj analog*).ti,ab.                                                                                 |
| 103    | 151126-32-8.rn.                                                                                             |
| 104    | *biphasic insulin/ or *human insulin/ or *insulin/ or *insulin aspart/ or *insulin detemir/ or *insulin     |
|        | glargine/ or *insulin glulisine/ or *insulin lispro/ or *isophane insulin/ or *long acting insulin/ or      |
|        | *monocomponent insulin/ or *neutral insulin/ or *recombinant human insulin/ or *synthetic insulin/          |
| 105    | (long acting insulin* or long acting analog* or slow* acting insulin* or slow* acting analog*).ti,ab.       |
| 106    | (glargine or Lantus or Optisulin or hoe 901 or 160337-95-1).ti,ab,rn.                                       |
| 107    | (detemir or determir or Levemir or nn 304 or 169148-63-4).ti,ab,rn.                                         |
| 108    | (nph insulin or humulin or novolin).ti,ab.                                                                  |
| 109    | 11061-68-0.rn.                                                                                              |
| 110    | (short acting insulin* or quick acting insulin* or rapid acting insulin* or rapidly acting insulin* or fast |
|        | acting insulin* or quick acting analog* or rapid acting analog* or rapidly acting analog* or short acting   |
|        | analog* or fast acting analog*).ti,ab.                                                                      |
| 111    | (Lispro or Lyspro or Humalog or Liprolog or 133107-64-9).ti,ab,rn.                                          |

| Ovid M | IEDLINE & Embase Strategy                                                                                                                                                                         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #      | Strategy                                                                                                                                                                                          |
| 112    | (Insulin Aspart or 116094-23-6 or NovoLog or NovoRapid or NovoMix).ti,ab,rn.                                                                                                                      |
| 113    | (Glulisine or 207748-29-6 or Apidra).ti,ab,rn.                                                                                                                                                    |
| 114    | *exendin 4/                                                                                                                                                                                       |
| 115    | *albiglutide/ or *liraglutide/ or *lixisenatide/ or *taspoglutide/                                                                                                                                |
| 116    | or/63-115                                                                                                                                                                                         |
| 117    | *Diabetes Mellitus/                                                                                                                                                                               |
| 118    | *Maturity Onset Diabetes Mellitus/                                                                                                                                                                |
| 119    | *Non Insulin Dependent Diabetes Mellitus/                                                                                                                                                         |
| 120    | *Lipoatrophic Diabetes Mellitus/                                                                                                                                                                  |
| 121    | ((adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or                                                                                            |
|        | stable or type 2 or type II or lipoatrophic) adj3 diabet\$).ti,ab.                                                                                                                                |
| 122    | (Mody or niddm or t2dm).ti,ab.                                                                                                                                                                    |
| 123    | or/117-122                                                                                                                                                                                        |
| 124    | Metformin/                                                                                                                                                                                        |
| 125    | Metformin.ti,ab.                                                                                                                                                                                  |
| 126    | (dimethylguanylguanidine or dimethylbiguanidine or glucophage).ti,ab.                                                                                                                             |
| 127    | (657-24-9 or 1115-70-4).rn.                                                                                                                                                                       |
| 128    | (apo-metformin or apotex or genmetformin or glucophage or glumetza or novometformin or nu-                                                                                                        |
|        | metformin or pms-metformin or ran-metformin or ratio-metformin or rhoxal-metformin or sandoz                                                                                                      |
|        | metformin).ti,ab.                                                                                                                                                                                 |
| 129    | (Glycon or Fortamet or Riomet or Venez or Diaformina or Dimefor or Glafornil or Glucaminol or                                                                                                     |
|        | Glucofage or Diabex or Diaformin or Glucohexal or Glucomet or Novomet or Metomin or Glucamet or                                                                                                   |
| 120    | Metsol or Orabet).ti,ab.                                                                                                                                                                          |
| 130    | (Aron or Diabetosan or Diabex or Diformin or Diformin Retard or Dimethylbiguanide or Dmgg or<br>Fluamine or Fortamet or Gliguanid or Glucoformin or Haurymellin or La 6023 or La6023 or Meguan or |
|        | Mellittin or Metaformin or Methformin or Metiguanide or Metphormin or imethylguanylguanide or                                                                                                     |
|        | Nndg or Dimethylbiguanide or Dimethyl Biguanidine or Dimethylbiguanidine or                                                                                                                       |
|        | Dimethyldiguanide).ti,ab.                                                                                                                                                                         |
| 131    | or/124-130                                                                                                                                                                                        |
| 132    | 116 and 123 and 131                                                                                                                                                                               |
| 133    | 132 use emef                                                                                                                                                                                      |
| 134    | 62 or 133                                                                                                                                                                                         |
| 135    | limit 134 to english                                                                                                                                                                              |
| 136    | limit 135 to yr="2009 -Current"                                                                                                                                                                   |
| 137    | exp animals/                                                                                                                                                                                      |
| 138    | exp animal experimentation/                                                                                                                                                                       |
| 139    | exp models animal/                                                                                                                                                                                |
| 140    | exp animal experiment/                                                                                                                                                                            |
| 141    | nonhuman/                                                                                                                                                                                         |
| 142    | exp vertebrate/                                                                                                                                                                                   |
| 143    | animal.po.                                                                                                                                                                                        |
| 144    | or/137-143                                                                                                                                                                                        |
| 145    | exp humans/                                                                                                                                                                                       |
| 146    | exp human experiment/                                                                                                                                                                             |
| 147    | human.po.                                                                                                                                                                                         |
| 148    | or/145-147                                                                                                                                                                                        |
| 149    | 144 not 148                                                                                                                                                                                       |
|        |                                                                                                                                                                                                   |
| 150    | 136 not 149                                                                                                                                                                                       |

| Ovid N | IEDLINE & Embase Strategy                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------|
| #      | Strategy                                                                                                                 |
| 152    | meta-analysis.pt.                                                                                                        |
| 153    | meta-analysis/ or systematic review/ or meta-analysis as topic/ or "meta analysis (topic)"/ or                           |
|        | "systematic review (topic)"/ or exp technology assessment, biomedical/                                                   |
| 154    | ((systematic* adj3 (review* or overview*)) or (methodologic* adj3 (review* or overview*))).ti,ab.                        |
| 155    | ((quantitative adj3 (review* or overview* or synthes*)) or (research adj3 (integrati* or                                 |
|        | overview*))).ti,ab.                                                                                                      |
| 156    | ((integrative adj3 (review* or overview*)) or (collaborative adj3 (review* or overview*)) or (pool* adj3 analy*)).ti,ab. |
| 157    | (data synthes* or data extraction* or data abstraction*).ti,ab.                                                          |
| 158    | (handsearch* or hand search*).ti,ab.                                                                                     |
| 159    | (mantel haenszel or peto or der simonian or dersimonian or fixed effect* or latin square*).ti,ab.                        |
| 160    | (met analy* or metanaly* or health technology assessment* or HTA or HTAs).ti,ab.                                         |
| 161    | (meta regression* or metaregression* or mega regression*).ti,ab.                                                         |
| 162    | (meta-analy* or metaanaly* or systematic review* or biomedical technology assessment* or bio-                            |
|        | medical technology assessment*).mp,hw.                                                                                   |
| 163    | (medline or Cochrane or pubmed or medlars).ti,ab,hw.                                                                     |
| 164    | (cochrane or (health adj2 technology assessment) or evidence report) jw.                                                 |
| 165    | (meta-analysis or systematic review).md.                                                                                 |
| 166    | or/152-165                                                                                                               |
| 167    | Randomized Controlled Trial.pt.                                                                                          |
| 168    | Randomized Controlled Trials as Topic/                                                                                   |
| 169    | "Randomized Controlled Trial (topic)"/                                                                                   |
| 170    | Randomized Controlled Trial/                                                                                             |
| 171    | Randomization/                                                                                                           |
| 172    | Random Allocation/                                                                                                       |
| 173    | Double-Blind Method/                                                                                                     |
| 174    | Double Blind Procedure/                                                                                                  |
| 175    | Double-Blind Studies/                                                                                                    |
| 176    | Single-Blind Method/                                                                                                     |
| 177    | Single Blind Procedure/                                                                                                  |
| 178    | Single-Blind Studies/                                                                                                    |
| 179    | Placebos/                                                                                                                |
| 180    | Placebo/                                                                                                                 |
| 181    | (random* or sham or placebo*).ti,ab,hw.                                                                                  |
| 182    | ((singl* or doubl*) adj (blind* or dumm* or mask*)).ti,ab,hw.                                                            |
| 183    | ((tripl* or trebl*) adj (blind* or dumm* or mask*)).ti,ab,hw.                                                            |
| 184    | or/167-183                                                                                                               |
| 185    | 151 and 166                                                                                                              |
| 186    | 185 not conference abstract.pt.                                                                                          |
| 187    | 151 and 184                                                                                                              |
| 188    | 187 not conference abstract.pt.                                                                                          |
| 189    | (economic adj2 model*).mp.                                                                                               |
| 190    | (cost minimi* or cost-utilit* or health utilit* or economic evaluation* or economic review* or cost                      |
|        | outcome or cost analys?s or economic analys?s or budget* impact analys?s).ti,ab.                                         |
| 191    | (cost effective* or pharmacoeconomic* or pharmaco-economic* or cost-benefit).ti.                                         |
| 192    | (life year or life years or qaly* or cost-benefit analys?s or cost effectiveness analys?s).ab.                           |
| 193    | (cost or costs or economic*).ti. and (costs or cost effectiveness or markov).ab.                                         |
| 194    | or/189-193                                                                                                               |

| Ovid N | IEDLINE & Embase Strategy                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #      | Strategy                                                                                                                                                                                                                                                                                                                                                                                                       |
| 195    | 151 and 194                                                                                                                                                                                                                                                                                                                                                                                                    |
| 196    | 195 not conference abstract.pt.                                                                                                                                                                                                                                                                                                                                                                                |
| 97     | *Nateglinide/                                                                                                                                                                                                                                                                                                                                                                                                  |
| 98     | (repaglinide or nateglinide or Meglitinide* or prandin or gluconorm or starlix or novonorm).ti,ab.                                                                                                                                                                                                                                                                                                             |
| 99     | (135062-02-1 or 105816-04-4).rn.                                                                                                                                                                                                                                                                                                                                                                               |
| 100    | *Pramlintide/                                                                                                                                                                                                                                                                                                                                                                                                  |
| 101    | (Pramlintide or symlin).ti,ab.                                                                                                                                                                                                                                                                                                                                                                                 |
| 102    | (amylin adj analog*).ti,ab.                                                                                                                                                                                                                                                                                                                                                                                    |
| 103    | 151126-32-8.rn.                                                                                                                                                                                                                                                                                                                                                                                                |
| 104    | *biphasic insulin/ or *human insulin/ or *insulin/ or *insulin aspart/ or *insulin detemir/ or *insulin glargine/ or *insulin glulisine/ or *insulin lispro/ or *isophane insulin/ or *long acting insulin/ or *monocomponent insulin/ or *neutral insulin/ or *recombinant human insulin/ or *synthetic insulin/                                                                                              |
| 105    | (long acting insulin* or long acting analog* or slow* acting insulin* or slow* acting analog*).ti,ab.                                                                                                                                                                                                                                                                                                          |
| 106    | (glargine or Lantus or Optisulin or hoe 901 or 160337-95-1).ti,ab,rn.                                                                                                                                                                                                                                                                                                                                          |
| 107    | (detemir or determir or Levemir or nn 304 or 169148-63-4).ti,ab,rn.                                                                                                                                                                                                                                                                                                                                            |
| 108    | (nph insulin or humulin or novolin).ti,ab.                                                                                                                                                                                                                                                                                                                                                                     |
| 109    | 11061-68-0.rn.                                                                                                                                                                                                                                                                                                                                                                                                 |
| 110    | (short acting insulin* or quick acting insulin* or rapid acting insulin* or rapidly acting insulin* or fast acting insulin* or quick acting analog* or rapid acting analog* or rapidly acting analog* or short acting analog* or fast acting analog*).ti,ab.                                                                                                                                                   |
| 111    | (Lispro or Lyspro or Humalog or Liprolog or 133107-64-9).ti,ab,rn.                                                                                                                                                                                                                                                                                                                                             |
| 112    | (Insulin Aspart or 116094-23-6 or NovoLog or NovoRapid or NovoMix).ti,ab,rn.                                                                                                                                                                                                                                                                                                                                   |
| 113    | (Glulisine or 207748-29-6 or Apidra).ti,ab,rn.                                                                                                                                                                                                                                                                                                                                                                 |
| 114    | *exendin 4/                                                                                                                                                                                                                                                                                                                                                                                                    |
| 115    | *albiglutide/ or *liraglutide/ or *lixisenatide/ or *taspoglutide/                                                                                                                                                                                                                                                                                                                                             |
| 116    | or/63-115                                                                                                                                                                                                                                                                                                                                                                                                      |
| 117    | *Diabetes Mellitus/                                                                                                                                                                                                                                                                                                                                                                                            |
| 118    | *Maturity Onset Diabetes Mellitus/                                                                                                                                                                                                                                                                                                                                                                             |
| 119    | *Non Insulin Dependent Diabetes Mellitus/                                                                                                                                                                                                                                                                                                                                                                      |
| 120    | *Lipoatrophic Diabetes Mellitus/                                                                                                                                                                                                                                                                                                                                                                               |
| 121    | ((adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or stable or type 2 or type II or lipoatrophic) adj3 diabet\$).ti,ab.                                                                                                                                                                                                                                      |
| 122    | (Mody or niddm or t2dm).ti,ab.                                                                                                                                                                                                                                                                                                                                                                                 |
| 123    | or/117-122                                                                                                                                                                                                                                                                                                                                                                                                     |
| 124    | Metformin/                                                                                                                                                                                                                                                                                                                                                                                                     |
| 125    | Metformin.ti,ab.                                                                                                                                                                                                                                                                                                                                                                                               |
| 126    | (dimethylguanylguanidine or dimethylbiguanidine or glucophage).ti,ab.                                                                                                                                                                                                                                                                                                                                          |
| 127    | (657-24-9 or 1115-70-4).rn.                                                                                                                                                                                                                                                                                                                                                                                    |
| 128    | (apo-metformin or apotex or genmetformin or glucophage or glumetza or novometformin or nu-<br>metformin or pms-metformin or ran-metformin or ratio-metformin or rhoxal-metformin or sandoz<br>metformin).ti,ab.                                                                                                                                                                                                |
| 129    | (Glycon or Fortamet or Riomet or Venez or Diaformina or Dimefor or Glafornil or Glucaminol or<br>Glucofage or Diabex or Diaformin or Glucohexal or Glucomet or Novomet or Metomin or Glucamet or<br>Metsol or Orabet).ti,ab.                                                                                                                                                                                   |
| 130    | (Aron or Diabetosan or Diabex or Diformin or Diformin Retard or Dimethylbiguanide or Dmgg or<br>Fluamine or Fortamet or Gliguanid or Glucoformin or Haurymellin or La 6023 or La6023 or Meguan or<br>Mellittin or Metaformin or Methformin or Metiguanide or Metphormin or imethylguanylguanide or<br>Nndg or Dimethylbiguanide or Dimethyl Biguanidine or Dimethylbiguanidine or<br>Dimethyldiguanide).ti,ab. |

| Ovid N | IEDLINE & Embase Strategy                                                                                                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------|
| #      | Strategy                                                                                                                        |
| 131    | or/124-130                                                                                                                      |
| 132    | 116 and 123 and 131                                                                                                             |
| 133    | 132 use emef                                                                                                                    |
| 134    | 62 or 133                                                                                                                       |
| 135    | limit 134 to english                                                                                                            |
| 136    | limit 135 to yr="2009 -Current"                                                                                                 |
| 137    | exp animals/                                                                                                                    |
| 138    | exp animal experimentation/                                                                                                     |
| 139    | exp models animal/                                                                                                              |
| 140    | exp animal experiment/                                                                                                          |
| 141    | nonhuman/                                                                                                                       |
| 142    | exp vertebrate/                                                                                                                 |
| 143    | animal.po.                                                                                                                      |
| 144    | or/137-143                                                                                                                      |
| 145    | exp humans/                                                                                                                     |
| 146    | exp human experiment/                                                                                                           |
| 147    | human.po.                                                                                                                       |
| 148    | or/145-147                                                                                                                      |
| 149    | 144 not 148                                                                                                                     |
| 150    | 136 not 149                                                                                                                     |
| 151    | remove duplicates from 150                                                                                                      |
| 152    | meta-analysis.pt.                                                                                                               |
| 153    | meta-analysis/ or systematic review/ or meta-analysis as topic/ or "meta analysis (topic)"/ or                                  |
|        | "systematic review (topic)"/ or exp technology assessment, biomedical/                                                          |
| 154    | ((systematic* adj3 (review* or overview*)) or (methodologic* adj3 (review* or overview*))).ti,ab.                               |
| 155    | ((quantitative adj3 (review* or overview* or synthes*)) or (research adj3 (integrati* or                                        |
| 156    | overview*))).ti,ab.<br>((integrative adj3 (review* or overview*)) or (collaborative adj3 (review* or overview*)) or (pool* adj3 |
| 120    | analy*)).ti,ab.                                                                                                                 |
| 157    | (data synthes* or data extraction* or data abstraction*).ti,ab.                                                                 |
| 157    | (handsearch* or hand search*).ti,ab.                                                                                            |
| 158    | (mantel haenszel or peto or der simonian or dersimonian or fixed effect* or latin square*).ti,ab.                               |
| 160    | (met analy* or metanaly* or health technology assessment* or HTA or HTAs).ti,ab.                                                |
| 161    | (meta regression* or metaregression* or mega regression*).ti,ab.                                                                |
| 162    | (meta-analy* or metaanaly* or systematic review* or biomedical technology assessment* or bio-                                   |
|        | medical technology assessment*).mp,hw.                                                                                          |
| 163    | (medline or Cochrane or pubmed or medlars).ti,ab,hw.                                                                            |
| 164    | (cochrane or (health adj2 technology assessment) or evidence report).jw.                                                        |
| 165    | (meta-analysis or systematic review).md.                                                                                        |
| 166    | or/152-165                                                                                                                      |
| 167    | Randomized Controlled Trial.pt.                                                                                                 |
| 168    | Randomized Controlled Trials as Topic/                                                                                          |
| 169    | "Randomized Controlled Trial (topic)"/                                                                                          |
| 170    | Randomized Controlled Trial/                                                                                                    |
| 171    | Randomization/                                                                                                                  |
| 172    | Random Allocation/                                                                                                              |
| 173    | Double-Blind Method/                                                                                                            |
| 174    | Double Blind Procedure/                                                                                                         |

| Ovid MEDLINE & Embase Strategy |                                                                                                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------|
| #                              | Strategy                                                                                            |
| 175                            | Double-Blind Studies/                                                                               |
| 176                            | Single-Blind Method/                                                                                |
| 177                            | Single Blind Procedure/                                                                             |
| 178                            | Single-Blind Studies/                                                                               |
| 179                            | Placebos/                                                                                           |
| 180                            | Placebo/                                                                                            |
| 181                            | (random* or sham or placebo*).ti,ab,hw.                                                             |
| 182                            | ((singl* or doubl*) adj (blind* or dumm* or mask*)).ti,ab,hw.                                       |
| 183                            | ((tripl* or trebl*) adj (blind* or dumm* or mask*)).ti,ab,hw.                                       |
| 184                            | or/167-183                                                                                          |
| 185                            | 151 and 166                                                                                         |
| 186                            | 185 not conference abstract.pt.                                                                     |
| 187                            | 151 and 184                                                                                         |
| 188                            | 187 not conference abstract.pt.                                                                     |
| 189                            | (economic adj2 model*).mp.                                                                          |
| 190                            | (cost minimi* or cost-utilit* or health utilit* or economic evaluation* or economic review* or cost |
|                                | outcome or cost analys?s or economic analys?s or budget* impact analys?s).ti,ab.                    |
| 191                            | (cost effective* or pharmacoeconomic* or pharmaco-economic* or cost-benefit).ti.                    |
| 192                            | (life year or life years or qaly* or cost-benefit analys?s or cost effectiveness analys?s).ab.      |
| 193                            | (cost or costs or economic*).ti. and (costs or cost effectiveness or markov).ab.                    |
| 194                            | or/189-193                                                                                          |
| 195                            | 151 and 194                                                                                         |
| 196                            | 195 not conference abstract.pt.                                                                     |

| Ovid ( | Ovid Cochrane Strategy                                                                                                                                                                                        |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| #      | Searches                                                                                                                                                                                                      |  |
| 1      | Hypoglycemic drugs/                                                                                                                                                                                           |  |
| 2      | ((Antidiabetic or anti diabetic or antihyperglycemic or anti-hyperglycemic or oral hypoglycemic or anti-<br>diabetes or antidiabetes) adj (agent or agents or drug or drugs or compound or compounds)).ti,ab. |  |
| 3      | Thiazolidinediones/                                                                                                                                                                                           |  |
| 4      | (glitazone* or thiazolidinedione* or pioglitazone* or rosiglitazone* or actos or avandia or avandamet or avandaryl).ti,ab.                                                                                    |  |
| 5      | (122320-73-4 or 155141-29-0).rn.                                                                                                                                                                              |  |
| 6      | Dipeptidyl-Peptidase IV Inhibitors/                                                                                                                                                                           |  |
| 7      | (sitagliptin or Januvia or Janumet or vildagliptin or Galvus or gliptin or incretin agent* or exenatide or Byetta or Bydureon or Exendin-4 or liraglutide or Victoza).ti,ab.                                  |  |
| 8      | (486460-32-6 or 274901-16-5 or 141758-74-9 or 204656-20-2).rn.                                                                                                                                                |  |
| 9      | (taspoglutide or R-1583 or R1583 or BIM51077 or BIM-51077 or lixisenatide or AVE0010 or AVE-0010 or albiglutide).ti,ab,rn.                                                                                    |  |
| 10     | 275371-94-3.rn.                                                                                                                                                                                               |  |
| 11     | (saxagliptin or Onglyza or bms 477118 or bms-477118 or bms477118 or 3-hydroxyadamantylglycine-4,5-<br>methanoprolinenitrile).ti,ab,rn.                                                                        |  |
| 12     | (361442-04-811 or 945667-22-111 or 361442-04-8 or 945667-22-1).rn.                                                                                                                                            |  |
| 13     | (linagliptin or Tradjenta or Trajenta or BI-1356 or alogliptin or SYR-322 or SYR322 or Nesina or dutogliptin).ti,ab,rn.                                                                                       |  |
| 14     | (668270-12-0 or 850649-62-6 or 852329-66-9).rn.                                                                                                                                                               |  |

| Ovid C | ochrane Strategy                                                                                                                                                                                                                                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #      | Searches                                                                                                                                                                                                                                                                                                                                                                                 |
| 15     | (dpp adj IV adj inhibitor*).ti,ab.                                                                                                                                                                                                                                                                                                                                                       |
| 16     | (Dipeptidyl-Peptidase adj IV adj inhibitor*).ti,ab.                                                                                                                                                                                                                                                                                                                                      |
| 17     | DPP-4 inhibitors.ti,ab.                                                                                                                                                                                                                                                                                                                                                                  |
| 18     | dipeptidyl peptidase-4 inhibitors.ti,ab.                                                                                                                                                                                                                                                                                                                                                 |
| 19     | exp Sulfonylurea Compounds/                                                                                                                                                                                                                                                                                                                                                              |
| 20     | (sulfonylurea* or tolbutamide or Orinase or glyconon or tolazamide or Tolinase or chlorpropamide or<br>Diabinese or glymese or glipizide or Glucotrol or glyburide or glibenclamide or glybenclamide or Diabeta<br>or Micronase or Glynase or gen-glybe or euglucon or glimepiride or Amaryl or gliclazide or Diamicron or<br>diaglyk or glibenese or minodiab or gen-gliclazide).ti,ab. |
| 21     | (64-77-7 or 1156-19-0 or 94-20-2 or 29094-61-9 or 10238-21-8 or 93479-97-1 or 21187-98-4).rn.                                                                                                                                                                                                                                                                                            |
| 22     | alpha-Glucosidases/ai                                                                                                                                                                                                                                                                                                                                                                    |
| 23     | (acarbose or glucobay or precose or prandase or akarbose or miglitol* or glyset or diastabol or voglibose).ti,ab.                                                                                                                                                                                                                                                                        |
| 24     | (56180-94-0 or 72432-03-2 or 83480-29-9).rn.                                                                                                                                                                                                                                                                                                                                             |
| 25     | ((alph* adj glucos* adj inhibit*) or (alf* adj glucos* adj inhibit*)).ti,ab.                                                                                                                                                                                                                                                                                                             |
| 26     | Acarbose/                                                                                                                                                                                                                                                                                                                                                                                |
| 27     | Lipase/ai                                                                                                                                                                                                                                                                                                                                                                                |
| 28     | (Orlistat or Xenical or Tetrahydrolipstatin or Sibutramine or meridia).ti,ab.                                                                                                                                                                                                                                                                                                            |
| 29     | (96829-58-2 or 106650-56-0).rn.                                                                                                                                                                                                                                                                                                                                                          |
| 30     | (lipase adj inhibit*).ti,ab.                                                                                                                                                                                                                                                                                                                                                             |
| 31     | (repaglinide or nateglinide or Meglitinide* or prandin or gluconorm or starlix or novonorm).ti,ab.                                                                                                                                                                                                                                                                                       |
| 32     | (135062-02-1 or 105816-04-4).rn.                                                                                                                                                                                                                                                                                                                                                         |
| 33     | Amyloid/                                                                                                                                                                                                                                                                                                                                                                                 |
| 34     | (Pramlintide or symlin).ti,ab.                                                                                                                                                                                                                                                                                                                                                           |
| 35     | (amylin adj analog*).ti,ab.                                                                                                                                                                                                                                                                                                                                                              |
| 36     | 151126-32-8.rn.                                                                                                                                                                                                                                                                                                                                                                          |
| 37     | exp insulin/                                                                                                                                                                                                                                                                                                                                                                             |
| 38     | (long acting insulin* or long acting analog* or slow* acting insulin* or slow* acting analog*).ti,ab.                                                                                                                                                                                                                                                                                    |
| 39     | (glargine or Lantus or Optisulin or hoe 901 or 160337-95-1).ti,ab,rn.                                                                                                                                                                                                                                                                                                                    |
| 40     | (detemir or determir or Levemir or nn 304 or 169148-63-4).ti,ab,rn.                                                                                                                                                                                                                                                                                                                      |
| 41     | (nph insulin or humulin or novolin).ti,ab.                                                                                                                                                                                                                                                                                                                                               |
| 42     | 11061-68-0.rn.                                                                                                                                                                                                                                                                                                                                                                           |
| 43     | (short acting insulin* or quick acting insulin* or rapid acting insulin* or rapidly acting insulin* or fast acting insulin* or quick acting analog* or rapid acting analog* or rapidly acting analog* or short acting analog* or fast acting analog*).ti,ab.                                                                                                                             |
| 44     | (Lispro or Lyspro or Humalog or Liprolog or 133107-64-9).ti,ab,rn.                                                                                                                                                                                                                                                                                                                       |
| 45     | (Insulin Aspart or 116094-23-6 or NovoLog or NovoRapid or NovoMix).ti,ab,rn.                                                                                                                                                                                                                                                                                                             |
| 46     | (Glulisine or 207748-29-6 or Apidra).ti,ab,rn.                                                                                                                                                                                                                                                                                                                                           |
| 47     | or/1-46                                                                                                                                                                                                                                                                                                                                                                                  |
| 48     | exp Diabetes Mellitus, Type 2/                                                                                                                                                                                                                                                                                                                                                           |
| 49     | Diabetes mellitus/                                                                                                                                                                                                                                                                                                                                                                       |
| 50     | ((adult or ketosis-resistant or matur* or late or non-insulin depend* or noninsulin depend* or slow or stable or type 2 or type II or lipoatrophic) adj3 diabet\$).ti,ab.                                                                                                                                                                                                                |
| 51     | (Mody or niddm or t2dm).ti,ab.                                                                                                                                                                                                                                                                                                                                                           |

| Ovid Cochrane Strategy |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #                      | Searches                                                                                                                                                                                                                                                                                                                                                                                                        |
| 52                     | or/48-51                                                                                                                                                                                                                                                                                                                                                                                                        |
| 53                     | Metformin/                                                                                                                                                                                                                                                                                                                                                                                                      |
| 54                     | Metformin.ti,ab.                                                                                                                                                                                                                                                                                                                                                                                                |
| 55                     | (dimethylguanylguanidine or dimethylbiguanidine or glucophage).ti,ab.                                                                                                                                                                                                                                                                                                                                           |
| 56                     | (657-24-9 or 1115-70-4).rn.                                                                                                                                                                                                                                                                                                                                                                                     |
| 57                     | (Glycon or Fortamet or Riomet or Venez or Diaformina or Dimefor or Glafornil or Glucaminol or Glucofage or Diabex or Diaformin or Glucohexal or Glucomet or Novomet or Metomin or Glucamet or Metsol or Orabet).ti,ab.                                                                                                                                                                                          |
| 58                     | (apo-metformin or apotex or genmetformin or glucophage or glumetza or novometformin or nu-<br>metformin or pms-metformin or ran-metformin or ratio-metformin or rhoxal-metformin or sandoz<br>metformin).ti,ab.                                                                                                                                                                                                 |
| 59                     | (Aron or Diabetosan or Diabex or Diformin or Diformin Retard or Dimethylbiguanide or Dmgg or<br>Fluamine or Fortamet or Gliguanid or Glucoformin or Haurymellin or La 6023 or La6023 or Meguan or<br>Mellittin or Metaformin or Methformin or Metiguanide or Metphormin or Dimethylguanylguanide or<br>Nndg or Dimethylbiguanide or Dimethyl Biguanidine or Dimethylbiguanidine or<br>Dimethyldiguanide).ti,ab. |
| 60                     | or/53-59                                                                                                                                                                                                                                                                                                                                                                                                        |
| 61                     | 47 and 52 and 60                                                                                                                                                                                                                                                                                                                                                                                                |
| 62                     | remove duplicates from 61                                                                                                                                                                                                                                                                                                                                                                                       |

| OTHER DATA | BASES                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------|
| PubMed     | Same MeSH, keywords, limits, and study types used as per MEDLINE search, with appropriate syntax used. |

#### **Grey Literature**

| Dates for Search: | May 7 to 15, 2012                                                          |
|-------------------|----------------------------------------------------------------------------|
| Keywords:         | Included terms for diabetes, and second- and third-line antidiabetes drugs |
| Limits:           | Publication years 2009 to 2012                                             |

The following sections of the CADTH grey literature checklist *Grey Matters: A Practical Search Tool for Evidence-Based Medicine* (www.cadth.ca/resources/grey-matters) were searched:

- Health Technology Assessment Agencies
- Health Economics
- Clinical Practice Guidelines
- Databases (free)
- Internet Search.

### **APPENDIX 2: STUDY CHARACTERISTICS**

| Author, Year                            | Countries                                     | Sponsor              | Comparators                                                                                                                                  | Treatment | Prior Metformi       | n Monotherapy                | Criteria for      | Sample | Blinding |
|-----------------------------------------|-----------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|------------------------------|-------------------|--------|----------|
|                                         |                                               |                      | (+ Metformin)                                                                                                                                | Duration  | Dose (mg/day)        | Duration With<br>Stable Dose | Metformin Failure | Size   |          |
| Ahren et al.<br>2004 <sup>100</sup>     | Sweden                                        | Novartis             | <ul><li>Vildagliptin (50 mg q.d.)</li><li>Placebo</li></ul>                                                                                  | 12 weeks  | ≥ 1,500 mg/day       | ≥ 3 months                   | A1C 7.0 to 9.5%   | 107    | DB       |
| Arechavaleta et al. 2011 <sup>38</sup>  | NR                                            | Merck                | <ul> <li>Glimepiride (1 mg/day to 6 mg/day)</li> <li>Sitagliptin (100 mg q.d.)</li> </ul>                                                    | 30 weeks  | ≥ 1,500 mg/day       | ≥ 12 weeks                   | A1C 6.5 to 9.0%   | 1,035  | DB       |
| Aschner et al.<br>2012 <sup>85</sup>    | 17 countries                                  | Sanofi               | <ul> <li>Insulin glargine 0.2 U/kg<br/>(titrated up or down by two<br/>units depending on FPG)</li> <li>Sitagliptin (100 mg q.d.)</li> </ul> | 24 weeks  | NR                   | 3 months                     | A1C 7.0 to 11.0%  | 515    | OL       |
| Barnett et al.<br>2007 <sup>53</sup>    | Multinational<br>(Europe, Central<br>America) | Eli Lilly            | <ul> <li>Exenatide (10 mcg b.i.d.)</li> <li>Insulin glargine q.d.</li> </ul>                                                                 | 4 months  | ≥ 1,500              | 3 months                     | A1C ≥ 7.1%        | 76     | OL       |
| Bergenstal et<br>al. 2010 <sup>86</sup> | United States,<br>India, Mexico               | Eli Lilly,<br>Amylin | <ul> <li>Exenatide (2 mg QW)</li> <li>Sitagliptin (100 mg q.d.)</li> <li>Pioglitazone (45 mg q.d.)</li> </ul>                                | 26 weeks  | NR                   | ≥ 2 months                   | A1C 7.1 to 11.0%  | 514    | DB       |
| Blonde et al.<br>2009 <sup>54</sup>     | United States                                 | Novartis             | <ul><li>Vildagliptin (100 mg)</li><li>Pioglitazone or rosiglitazone</li></ul>                                                                | 3 months  | $1,452 \pm 500$ (SD) | ≥ 4 weeks                    | A1C 7 to 10%      | 2,664  | OL       |
| Bolli et al.<br>2009 <sup>55</sup>      | Multinational                                 | Novartis             | <ul> <li>Vildagliptin (100 mg/day)</li> <li>Pioglitazone (30 mg/day)</li> </ul>                                                              | 12 months | 2,020 ± 453 (SD)     | 43 ± 3 (SD)<br>months        | A1C 7.5 to 11%    | 576    | DB       |
| Bosi et al.<br>2007 <sup>56</sup>       | Multinational                                 | Novartis             | <ul> <li>Vildagliptin (50 mg/day)</li> <li>Vildagliptin (100 mg/day)</li> </ul>                                                              | 6 months  | 2,101 ± 320 (SD)     | 18 ± 23 (SD)<br>month        | A1C > 7%          | 367    | DB       |
| Brazg et al.<br>2007 <sup>39</sup>      | United States                                 | Merck                | <ul><li>Sitagliptin (50 mg b.i.d.)</li><li>Placebo</li></ul>                                                                                 | 1 month   | ≥ 1,500              | ≥ 6 weeks                    | A1C ≥ 6.5%        | 28     | DB       |
| Bunck et al.<br>2009 <sup>40</sup>      | Sweden, Finland,<br>Netherlands               | Eli Lilly,<br>Amylin | <ul> <li>Exenatide (5 mg/day to 20 mcg b.i.d.)</li> <li>Glargine (titrated)</li> </ul>                                                       | 12 months | 2,168 ± 773 (SD)     | 2 months                     | A1C ≥ 6.5%        | 69     | OL       |
| Charbonnel et<br>al. 2006 <sup>58</sup> | France, Israel,<br>United States              | Merck                | <ul> <li>Sitagliptin (100 mg/day)</li> <li>Placebo</li> </ul>                                                                                | 6 months  | ≥ 1,500              | ≥ 19 weeks                   | A1C≥7             | 701    | DB       |

|                                           | <b>Table 15:</b> Detailed Study Characteristics of RCTs Included in the Systematic Review of Second-Line Pharmacotherapies for Type 2 Diabetes (Original Review and Update) |                                         |                                                                                                                                   |            |                                              |                              |                           |        |          |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|------------------------------|---------------------------|--------|----------|--|--|--|
| Author, Year                              | Countries                                                                                                                                                                   | Sponsor                                 | Comparators                                                                                                                       | Treatment  | Prior Metformin                              | n Monotherapy                | Criteria for              | Sample | Blinding |  |  |  |
|                                           |                                                                                                                                                                             |                                         | (+ Metformin)                                                                                                                     | Duration   | Dose (mg/day)                                | Duration With<br>Stable Dose | Metformin Failure         | Size   |          |  |  |  |
| Charbonnel et<br>al. 2005 <sup>57</sup>   | Multinational                                                                                                                                                               | Takeda, Eli Lilly                       | <ul> <li>Pioglitazone (15 mg/day to<br/>45 mg/day)</li> <li>Gliclazide (80 mg/day to 320<br/>mg/day)</li> </ul>                   | 24 months  | ≥ 50% of<br>maximum<br>recommended or<br>MTD | ≥ 3 months                   | A1C - 7.5-11%             | 630    | OL       |  |  |  |
| Charpentier et<br>al. 2001 <sup>59</sup>  | France                                                                                                                                                                      | Hoechst Marion<br>Roussel               | <ul> <li>Glimepiride (1 mg/day to 6 mg/day)</li> <li>Glimepiride + metformin</li> <li>Metformin only</li> </ul>                   | 5 months   | 2,550                                        | ≥ 4 weeks                    | FBG 7.8 to 13.9<br>mmol/L | 372    | DB       |  |  |  |
| Cho et al.<br>2010 <sup>99</sup>          | Korea                                                                                                                                                                       | Choongwae<br>Pharma                     | <ul><li>Mitiglinide (10 mg b.i.d.)</li><li>Placebo</li></ul>                                                                      | 16 weeks   | 1,500 mg/day                                 | 4 weeks                      | A1C > 7.0%                | 145    | DB       |  |  |  |
| DeFronzo et al.<br>2005 <sup>60</sup>     | United States                                                                                                                                                               | Eli Lilly,<br>Amylin                    | <ul> <li>Exenatide (5 mcg b.i.d.)</li> <li>Exenatide (10 mcg b.i.d.)</li> <li>Placebo</li> </ul>                                  | 7.5 months | ≥ 1,500                                      | 3 months                     | A1C 7.1 to 11%            | 226    | DB       |  |  |  |
| DeFronzo et al.<br>2009 <sup>61</sup>     | USA, Brazil                                                                                                                                                                 | Bristol-Myers<br>Squibb,<br>AstraZeneca | <ul> <li>Saxagliptin (2.5 mg q.d.)</li> <li>Saxagliptin (5 mg q.d.)</li> <li>Saxagliptin (10 mg q.d.)</li> <li>Placebo</li> </ul> | 6 months   | 1,500 to 2,550                               | ≥8 weeks                     | A1C > 7.0%                | 562    | DB       |  |  |  |
| Derosa et al.<br>2012 <sup>149</sup>      | Italy                                                                                                                                                                       | NR                                      | <ul><li>Exenatide (10 mcg b.i.d.)</li><li>Placebo</li></ul>                                                                       | 12 months  | 2,500 ± 500<br>mg/day                        | 8 ± 2 months                 | A1C 8.0 to 11.0%          | 171    | DB       |  |  |  |
| Diamant et al.<br>2010 <sup>87</sup>      | Multinational Eli Lilly,<br>(Europe, Asia, Amylin<br>North America)                                                                                                         |                                         | <ul> <li>Exenatide 2 mg QW</li> <li>Insulin glargine (target FBG range 4.0-5.5 mmol/L)</li> </ul>                                 | 26 weeks   | ≥ 1,500 mg/day                               | ≥3 months                    | A1C 7.1 to 11.0%,         | 321    | OL       |  |  |  |
| Einhorn et al.<br>2000 <sup>62</sup>      | United States                                                                                                                                                               | Takeda                                  | <ul><li>Pioglitazone (30 mg/day)</li><li>Placebo</li></ul>                                                                        | 4 months   | Stable dose                                  | ≥ 30 days                    | A1C ≥ 8%                  | 328    | OL       |  |  |  |
| Feinglos et al.<br>2005 <sup>150</sup>    | United States                                                                                                                                                               | Pfizer                                  | <ul><li>Glipizide (2.5 mg/day)</li><li>Placebo</li></ul>                                                                          | 4 months   | 151                                          | ≥ 3 months                   | A1C 7.0 to 8.5%           | 61     | DB       |  |  |  |
| Ferrannini et<br>al. 2009 <sup>37</sup>   | Multinational                                                                                                                                                               | Novartis                                | <ul> <li>Vildagliptin (100 mg/day)</li> <li>Glimepiride (mean 4.5 mg/day)</li> </ul>                                              | 12 months  | 1,897 ± 410 (SD)                             | ≥ 4 weeks                    | A1C 6.5 to 8.5%           | 2789   | DB       |  |  |  |
| Filozof and<br>Gautier 2010 <sup>88</sup> | NR                                                                                                                                                                          | Novartis                                | <ul> <li>Vildagliptin 50 mg b.i.d.</li> <li>Gliclazide 80 mg/day to 320 mg/day</li> </ul>                                         | 52 weeks   | ≥ 1,500 mg/day                               | ≥4 weeks                     | A1C 7.5 to 11.0%          | 1007   | DB       |  |  |  |

| Author, Year                                 | Countries                                         | Sponsor                                 | Comparators                                                                                                                                                                         | Treatment  | Prior Metformi                             | n Monotherapy                | Criteria for      | Sample | Blinding |
|----------------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------|------------------------------|-------------------|--------|----------|
|                                              |                                                   |                                         | (+ Metformin)                                                                                                                                                                       | Duration   | Dose (mg/day)                              | Duration With<br>Stable Dose | Metformin Failure | Size   |          |
| Fonseca et al.<br>2000 <sup>63</sup>         | United States                                     | SmithKline<br>Beecham                   | <ul> <li>Rosiglitazone (4 mg/day)</li> <li>Rosiglitazone (8 mg/day)</li> <li>Metformin (2,500 mg/day)</li> </ul>                                                                    | 6.5 months | ≤ 2,500                                    | > 4 weeks                    | FPG > 7.7 mmol/L  | 348    | DB       |
| Forst et al.<br>2010 <sup>89</sup>           | Multinational<br>(Europe)                         | Boehringer<br>Ingelheim                 | <ul> <li>Linagliptin (1 mg q.d.)</li> <li>Linagliptin (5 mg q.d.)</li> <li>Linagliptin (10 mg q.d.)</li> <li>Glimepiride (1 mg/day to 3 mg q.d.) t.i.d.</li> <li>Placebo</li> </ul> | 12 weeks   | NR                                         | ≥ 10 weeks                   | A1C 7.5-10%       | 333    | DB       |
| Frid et al.<br>2008 <sup>151</sup>           | Multinational NR<br>(Europe, North<br>America)    |                                         | <ul> <li>Glimepiride</li> <li>Liraglutide (0.6 mg/day)</li> <li>Liraglutide (1.2 mg/day)</li> <li>Liraglutide (1.8 mg/day)</li> <li>Placebo</li> </ul>                              | 6.5 months | NR                                         | NR                           | NR                | NR     | DB       |
| Gallwitz et al.<br>2011 <sup>41</sup>        | Germany                                           | NR                                      | <ul> <li>Exenatide (10 mcg b.i.d.)</li> <li>Biphasic insulin aspart<br/>(b.i.d.)</li> </ul>                                                                                         | 26 weeks   | NR                                         | NR                           | A1C 6.5-10.0%     | 363    | OL       |
| Gallwitz et al.<br>et al. 2012 <sup>42</sup> | Multinational<br>(Europe, Asia,<br>North America) | Boehringer<br>Ingelheim                 | <ul> <li>Linagliptin (5 mg q.d.)</li> <li>Glimepiride (1 mg/day to 4 mg/day)</li> </ul>                                                                                             | 104 weeks  | ≥ 1,500 mg/day                             | NR                           | A1C 6.5-10.0%     | 1551   | DB       |
| Gallwitz et al.<br>2012 <sup>43</sup>        | Multinational<br>(Europe, Central<br>America)     | Eli Lilly,<br>Amylin                    | <ul><li>Exenatide (10 mcg b.i.d.)</li><li>Glimepiride (MTD)</li></ul>                                                                                                               | 4.5 years  | MTD                                        | NR                           | A1C 6.5-9.0%      | 1029   | OL       |
| Gao et al.<br>2009 <sup>97</sup>             | Multinational (Asia)                              | Eli Lilly,<br>Amylin                    | <ul> <li>Exenatide (4 mg/day to10 mcg)</li> <li>Placebo</li> </ul>                                                                                                                  | 4 months   | 1,000 to 3,000                             | ≥ 3 months                   | A1C ≥ 7%          | 91     | DB       |
| Garber et al.<br>2006 <sup>64</sup>          | United States                                     | Bristol-Myers<br>Squibb                 | <ul> <li>Glyburide (5 mg to 10 mg)</li> <li>Rosiglitazone (4 mg/day)</li> </ul>                                                                                                     | 6 months   | 1,821                                      | ≥ 8 weeks                    | A1C > 7.0%        | 318    | DB       |
| Goke et al.<br>2010 <sup>44</sup>            | Multinational<br>(Europe, Asia)                   | Bristol-Myers<br>Squibb,<br>AstraZeneca | <ul> <li>Saxagliptin 5 mg/day</li> <li>Glipizide 5 to 20 mg/day</li> </ul>                                                                                                          | 52 weeks   | ≥ 1,500 mg/day                             | ≥8 weeks                     | A1C > 6.5-10.0%   | 858    | DB       |
| Gomez-Perez<br>et al. 2002 <sup>51</sup>     | Mexico                                            | GlaxoSmithKline                         | <ul> <li>Rosiglitazone (4 mg/day)</li> <li>Rosiglitazone (8 mg/day)</li> <li>Placebo</li> </ul>                                                                                     | 6 months   | 2,500 during 4-<br>week titration<br>phase | 4-week titration phase       | FPG ≥ 140 mg/dL   | 116    | DB       |

| Author, Year                           | Countries                 | Sponsor               | Comparators                                                                                                                                      | Treatment | Prior Metformir                      | n Monotherapy                                                        | Criteria for      | Sample | Blinding |
|----------------------------------------|---------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|----------------------------------------------------------------------|-------------------|--------|----------|
|                                        |                           |                       | (+ Metformin)                                                                                                                                    | Duration  | Dose (mg/day)                        | Duration With<br>Stable Dose                                         | Metformin Failure | Size   |          |
| Goodman et al.<br>2009 <sup>65</sup>   | Multinational             | Novartis              | <ul> <li>Vildagliptin (100 mg/day<br/>a.m.)</li> <li>Vildagliptin (100 mg/day<br/>p.m.)</li> <li>Placebo</li> </ul>                              | 6 months  | 1,896 ± 391 (SD)                     | ≥ 3 months                                                           | A1C ≥ 7.5%        | 370    | DB       |
| Halimi et al.<br>2000 <sup>66</sup>    | France                    | Authors from<br>Bayer | <ul> <li>Acarbose (1,700 mg/day to 2,550 mg/day)</li> <li>Placebo</li> </ul>                                                                     | 6 months  | 1,770 to 2,550                       | ≥ 2 months                                                           | A1C > 7%          | 152    | DB       |
| Hamann et al.<br>2008 <sup>152</sup>   | Multinational             | GlaxoSmithKline       | <ul> <li>Sulfonylurea (glyburide or gliclazide 80 mg/day)</li> <li>Rosiglitazone (4 mg/day)</li> </ul>                                           | 12 months | 1,500 to 2,000<br>(forced titration) | ≥ 8 weeks prior<br>to screening,<br>then 4 weeks<br>forced titration | A1C > 7%          | 596    | DB       |
| Home et al.<br>2009 <sup>52</sup>      | Multinational<br>(Europe) | GlaxoSmithKline       | <ul><li>Sulfonylurea (titrated)</li><li>Rosiglitazone (titrated)</li></ul>                                                                       | 66 months | ≥ 1,500                              | ≥8 weeks                                                             | A1C > 7%          | 2,222  | OL       |
| Kaku et al.<br>2009 <sup>45</sup>      | Japan                     | Takeda                | <ul> <li>Pioglitazone (15 mg/day to<br/>30 mg/day)</li> <li>Placebo</li> </ul>                                                                   | 7 months  | 500 or 750                           | 3 months                                                             | A1C ≥ 6.5%        | 169    | DB       |
| Khanolkar et al.<br>2008 <sup>46</sup> | United Kingdom            | NR                    | <ul> <li>Rosiglitazone (4 mg/day)</li> <li>Gliclazide (80 mg/day)</li> </ul>                                                                     | 6 months  | ≤ 2000                               | > 4 weeks                                                            | A1C > 6.5%        | 50     | OL       |
| Kilo et al.<br>2003 <sup>67</sup>      | United States             | Novo Nordisk          | <ul> <li>Biphasic insulin aspart</li> <li>Biphasic human insulin</li> <li>NPH insulin</li> </ul>                                                 | 3 months  | 500 to 2,500                         | 4 weeks                                                              | FBG 90-126 mg/dL  | 140    | OL       |
| Kvapil et al.<br>2006 <sup>68</sup>    | Multinational NR          |                       | <ul> <li>Biphasic insulin aspart<br/>(b.i.d.)</li> <li>Biphasic insulin aspart<br/>(b.i.d.) + metformin</li> <li>Glyburide (titrated)</li> </ul> | 4 months  | 1,660 (range 500<br>to 3,500)        | ≥1 month                                                             | A1C > 7%          | 230    | OL       |
| Leiter et al.<br>2005 <sup>69</sup>    | Canada                    | GlaxoSmithKline       | <ul> <li>Rosiglitazone (4 mg/day to<br/>8 mg/day)</li> <li>Metformin</li> </ul>                                                                  | 8 months  | ≤ 1,700                              | ≥ 3 months                                                           | FPG > 7.0 mmol/L  | 236    | OL       |
| Marre et al.<br>2002 <sup>70</sup>     | Multinational             | Merck Lipha           | <ul> <li>Glyburide (5 mg)</li> <li>Glyburide (2.5 mg) +<br/>metformin</li> <li>Glyburide (5 mg) +<br/>metformin</li> <li>Metformin</li> </ul>    | 4 months  | ≥ 1,500                              | ≥ 2 months                                                           | FPG ≥ 7 mmol/L    | 411    | DB       |

| Author, Year                                 | Countries                                   | Sponsor                   | Comparators                                                                                                                                                              | Treatment  | Prior Metformi                          | n Monotherapy                | Criteria for      | Sample | Blinding |
|----------------------------------------------|---------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|------------------------------|-------------------|--------|----------|
|                                              |                                             |                           | (+ Metformin)                                                                                                                                                            | Duration   | Dose (mg/day)                           | Duration With<br>Stable Dose | Metformin Failure | Size   | _        |
| Marre et al.<br>2002 <sup>71</sup>           | Multinational                               | Novartis                  | <ul> <li>Nateglinide (60 mg AC)</li> <li>Nateglinide (120 mg AC)</li> <li>Placebo (AC)</li> </ul>                                                                        | 6 months   | 2,000                                   | ≥ 4 weeks                    | A1C ≥ 6.8%        | 467    | DB       |
| Matthews et<br>al. 2005 <sup>98</sup>        | Multinational                               | Takeda<br>Eli Lilly       | <ul> <li>Pioglitazone (15 mg q.d.)</li> <li>Gliclazide (80 mg q.d.)</li> </ul>                                                                                           | 12 months  | 50% of maximum<br>recommended or<br>MTD | ≥ 3 months                   | A1C ≥ 7.5%        | 630    | DB       |
| Moses et al.<br>1999 <sup>72</sup>           | Australia                                   | Novo Nordisk              | <ul> <li>Repaglinide (0.5 mg/day to<br/>4.0 mg)</li> <li>Placebo</li> </ul>                                                                                              | 4.5 months | 1,800 ± 700 (SD)                        | 4 ± 3 (SD) years             | A1C > 7.1%        | 54     | DB       |
| Nauck et al.<br>2006 <sup>73</sup>           | Demark mg c                                 |                           | <ul> <li>Liraglutide (0.5 mg/day to 2 mg q.d.)</li> <li>Glimepiride (2 mg to 4 mg)</li> </ul>                                                                            | 1 month    | ≤ 2,000                                 | 2 weeks to ≥ 3<br>months     | FPG ≥ 9 mmol/L    | 36     | DB       |
| Nauck et al.<br>2007 <sup>47</sup>           | Germany, United<br>States                   | Merck                     | <ul> <li>Sitagliptin (100 mg/day)</li> <li>Glipizide (5 mg/day)</li> </ul>                                                                                               | 12 months  | ≥ 1,500                                 | ≥ 2 weeks                    | A1C 6.5-10%       | 1091   | DB       |
| Nauck et al.<br>2009 <sup>74</sup>           | Multinational                               | Novo Nordisk              | <ul> <li>Glimepiride (4 mg/day)</li> <li>Placebo</li> <li>Liraglutide (0.6 mg/day to 1.8 mg/day)</li> </ul>                                                              | 6.5 months | 1,500 to 2,000<br>(forced titration)    | ≥ 3 weeks (forced titration) | A1C > 7%          | 366    | DB       |
| Pan et al.<br>2012 <sup>90</sup>             | China                                       | Novartis                  | <ul> <li>Vildagliptin (50 mg q.d.)</li> <li>Vildagliptin (50 mg b.i.d.)</li> <li>Placebo</li> </ul>                                                                      | 24 weeks   | ≥1,500 mg/day                           | ≥4 weeks                     | A1C 7.0-10.0%     | 438    | DB       |
| Papathanassio<br>u et al. 2009 <sup>48</sup> | Greece                                      | University of<br>Ioannina | <ul> <li>Glimepiride (4 mg q.d.)</li> <li>Pioglitazone (30 mg q.d.)</li> </ul>                                                                                           | 6 months   | NR                                      | ≥ 6 months of<br>metformin   | A1C > 6.5%        | 14     | OL       |
| Pfutzner et al.<br>2011 <sup>91</sup>        | Germany                                     | NR                        | <ul> <li>Pioglitazone (15 mg b.i.d.)</li> <li>Glimepiride (2 mg q.d.)</li> </ul>                                                                                         | 24 weeks   | Maximum<br>tolerated dose               | NR                           | A1C≥6.5%          | 305    | DB       |
| Phillips et al.<br>2003 <sup>75</sup>        | Australia,<br>New Zealand                   | Bayer AG                  | <ul> <li>Acarbose (up to 100 mg<br/>b.i.d.)</li> <li>Placebo</li> </ul>                                                                                                  | 6 months   | 1,700                                   | ≥ 3 months                   | A1C > 7%          | 83     | DB       |
| Poon et al.<br>2005 <sup>76</sup>            | United States                               | Amylin                    | <ul> <li>Exenatide (2.5 mcg b.i.d.)</li> <li>Exenatide (5 mcg b.i.d.)</li> <li>Exenatide (7.5 mcg b.i.d.)</li> <li>Exenatide (10 mcg b.i.d.)</li> <li>Placebo</li> </ul> | 1 month    | Unspecified                             | NR                           | A1C ≥ 6.8%        | 71     | DB       |
| Pratley et al.<br>2010 <sup>92</sup>         | Multinational<br>(Europe, North<br>America) | Novo Nordisk              | <ul> <li>Liraglutide (1.2 mg q.d.)</li> <li>Liraglutide (1.8 mg q.d.)</li> <li>Sitagliptin (100 mg q.d.)</li> </ul>                                                      | 26 weeks   | ≥ 1,500 mg/day                          | ≥ 3 months                   | A1C 7.5-10.0%     | 665    | OL       |

|                                           | Table 15: Detailed Study Characteristics of RCTs Included in the Systematic Review of Second-Line Pharmacotherapies         for Type 2 Diabetes (Original Review and Update) |                         |                                                                                                            |                       |                                                              |                                               |                                   |                |          |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------|----------------|----------|--|--|--|
| Author, Year                              | Countries                                                                                                                                                                    | Sponsor                 | Comparators<br>(+ Metformin)                                                                               | Treatment<br>Duration | Prior Metformi<br>Dose (mg/day)                              | n Monotherapy<br>Duration With<br>Stable Dose | Criteria for<br>Metformin Failure | Sample<br>Size | Blinding |  |  |  |
| Raskin et al.<br>2007 <sup>77</sup>       | United States                                                                                                                                                                | Novo Nordisk            | <ul> <li>Biphasic insulin aspart 30<br/>(titrated)</li> <li>Insulin glargine (titrated)</li> </ul>         | 7 months              | 1,500 to 2,550<br>during 4-week<br>run-in period             | 4 week run-in<br>period                       | A1C > 8.0%                        | 157            | OL       |  |  |  |
| Raz 2 et al.<br>008 <sup>78</sup>         | Israel,<br>United States                                                                                                                                                     | Merck                   | <ul> <li>Sitagliptin (100 mg/day)</li> <li>Placebo</li> </ul>                                              | 7.5 months            | 1,500                                                        | 1.5 months                                    | A1C 8.0-11.0%                     | 190            | DB       |  |  |  |
| Ristic et al.<br>2006 <sup>153</sup>      | Multinational Novartis                                                                                                                                                       |                         | <ul> <li>Gliclazide (80 mg/day to 240 mg/day)</li> <li>Nateglinide (60 mg/day to 180 mg t.i.d.)</li> </ul> | 6 months              | 1,000                                                        | ≥ 3 months                                    | A1C 6.8-9.0%                      | 262            | DB       |  |  |  |
| Ristic et al.<br>2007 <sup>79</sup>       | <sup>79</sup>                                                                                                                                                                |                         | <ul> <li>Gliclazide (80 mg/day to 240 mg/day)</li> <li>Nateglinide (60 mg/day to 180 mg AC)</li> </ul>     | 12 months             | 1,000                                                        | ≥ 2 months                                    | A1C > 6.8%                        | NR             | DB       |  |  |  |
| Rodger et al.<br>1995 <sup>80</sup>       | Canada                                                                                                                                                                       | Bayer                   | <ul> <li>Acarbose (50 mg/day to 200 mg AC)</li> <li>Placebo</li> </ul>                                     | 12 months             | NR                                                           | NR                                            | A1C > 7%                          | 83             | DB       |  |  |  |
| Rosenstock et al. 1998 <sup>81</sup>      | United States                                                                                                                                                                | Bayer                   | <ul> <li>Acarbose (25 mg/day 50 mg<br/>t.i.d.)</li> <li>Placebo</li> </ul>                                 | 6 months              | 2,000 to 2,500                                               | ≥ 56 days                                     | A1C > 7%                          | 84             | DB       |  |  |  |
| Schernthaner<br>et al. 2004 <sup>49</sup> | Multinational<br>(Europe)                                                                                                                                                    | Servier                 | <ul> <li>Gliclazide MR (30 mg/day to 120 mg/day)</li> <li>Glimepiride (1 mg/day to 6 mg/day)</li> </ul>    | 7 months              | NR                                                           | ≥ 3 months                                    | A1C 6.9-11.5%                     | 219            | DB       |  |  |  |
| Scott et al.<br>2008 <sup>82</sup>        | Multinational                                                                                                                                                                | Merck & Co.             | <ul> <li>Rosiglitazone (8 mg/day)</li> <li>Sitagliptin (100 mg/day)</li> <li>Placebo</li> </ul>            | 4.5 months            | ≥1,500                                                       | ≥ 10 weeks                                    | A1C > 7%                          | 273            | DB       |  |  |  |
| Taskinen et al.<br>2011 <sup>93</sup>     | Multinational<br>(Europe, North<br>America)                                                                                                                                  | Boehringer<br>Ingelheim | <ul> <li>Linagliptin (5 mg q.d.)</li> <li>Placebo</li> </ul>                                               | 24 weeks              | ≥ 1,500 mg/day                                               | ≥ 12 weeks                                    | A1C 7.0–10.0%                     | 701            | DB       |  |  |  |
| Trautmann et al. 2007 <sup>154</sup>      | United States,<br>Australia, United<br>Kingdom                                                                                                                               | NR                      | <ul> <li>Exenatide (5 mg/day to 10 mcg b.i.d.)</li> <li>Insulin glargine</li> </ul>                        | 4 months              | NR                                                           | NR                                            | NR                                | NR             | OL       |  |  |  |
| Umpierrez et<br>al. 2006 <sup>83</sup>    | United States                                                                                                                                                                | Sanofi-aventis          | <ul> <li>Glimepiride (2 mg/day to 8 mg/day)</li> <li>Pioglitazone (30 mg/day to 45 mg/day)</li> </ul>      | 6 months              | 1,000 to 2,500<br>or 500 to 2,000<br>for extended<br>release | 2 months                                      | A1C≥7.5%                          | 210            | OL       |  |  |  |

|                                        | <b>Table 15:</b> Detailed Study Characteristics of RCTs Included in the Systematic Review of Second-Line Pharmacotherapies for Type 2 Diabetes (Original Review and Update) |                                         |                                                                                                |                       |                                  |                                |                                   |                |          |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|--------------------------------|-----------------------------------|----------------|----------|--|--|--|
| Author, Year                           | Countries                                                                                                                                                                   | Sponsor                                 | Comparators<br>(+ Metformin)                                                                   | Treatment<br>Duration | Prior Metformin<br>Dose (mg/day) | n Monotherapy<br>Duration With | Criteria for<br>Metformin Failure | Sample<br>Size | Blinding |  |  |  |
| Van Gaal<br>2001 <sup>84</sup> et al.  | Belgium, Israel,<br>Austria, Czech<br>Republic                                                                                                                              | Bayer, Sanofi-<br>Synthélabo            | <ul> <li>Miglitol (25 mg/day to 100 mg t.i.d.)</li> <li>Placebo</li> </ul>                     | 8 months              | Unspecified<br>stable dose       | Stable Dose<br>> 3 months      | A1C≥7.5                           | 153            | DB       |  |  |  |
| Von Bibra et al.<br>2008 <sup>36</sup> | Germany                                                                                                                                                                     | NR                                      | <ul> <li>Glimepiride (3 mg/day)</li> <li>Rosiglitazone (8 mg/day)</li> </ul>                   | 4 months              | 1,600 ± 500 (SD)                 | NR                             | A1C 6.5-9.0%                      | 13             | OL       |  |  |  |
| Wang et al.<br>2011 <sup>155</sup>     | Taiwan                                                                                                                                                                      | NSC/VGH,<br>Bayer Schering              | <ul><li>Acarbose 50 mg t.i.d.</li><li>Glyburide 2.5 mg t.i.d.</li></ul>                        | 16 weeks              | 1,500 mg/day                     | 8 weeks                        | A1C 7.0-11.0%                     | 55             | OL       |  |  |  |
| Wolever et al.<br>1997 <sup>156</sup>  | Canada                                                                                                                                                                      | Bayer Canada                            | <ul> <li>Acarbose (50 mg/day to 200 mg t.i.d.)</li> <li>Placebo</li> </ul>                     | 12 months             | NR                               | NR                             | A1C > 7%                          | 83             | DB       |  |  |  |
| Yang et al.<br>2011 <sup>95</sup>      | China, Korea, India                                                                                                                                                         | Bristol-Myers<br>Squibb,<br>AstraZeneca | <ul><li>Saxagliptin 5 mg q.d.</li><li>Placebo</li></ul>                                        | 24 weeks              | ≥ 1,500 mg/day                   | ≥8 weeks                       | A1C 7.0-10.0%                     | 570            | DB       |  |  |  |
| Yang et al.<br>2011 <sup>94</sup>      | China, Korea, India                                                                                                                                                         | Novo Nordisk                            | <ul> <li>Liraglutide (0.6 mg/day to<br/>1.8 mg q.d.)</li> <li>Glimepiride 4 mg q.d.</li> </ul> | 16 weeks              | 2,000 mg/day                     | ≥ 3 months                     | A1C 7.0-11.0%                     | 928            | DB       |  |  |  |
| Yang et al.<br>2012 <sup>96</sup>      | China                                                                                                                                                                       | Merck Sharp                             | <ul><li>Sitagliptin 100 mg q.d.</li><li>Placebo</li></ul>                                      | 24 weeks              | 1,000 or 1,700<br>mg/day         | ≥ 10 weeks                     | A1C 7.5-11.0%                     | 395            | DB       |  |  |  |

A1C = glycated hemoglobin; AC = before meals; b.i.d. = twice daily; DB = double-blind; FBG = fasting blood glucose; FPG = fasting plasma glucose concentration; MTD = maximum tolerated dose; NR = not reported; NSC/VGH = National Science Council and Veterans General Hospital; OL = open label; q.d. = once daily; QW = once weekly; RCTs = randomized controlled trials; SD = standard deviation; t.i.d. = three times daily; U = units.

# APPENDIX 3: COMPARISON OF RESULTS FROM NMA (BLACK) AND DIRECT PAIRWISE (BLUE) META-ANALYSES FOR A1C (%) (A), WEIGHT (KG) (B), OVERALL HYPOGLYCEMIA (C)

| Α | Placebo           | ← Vs.             |                  |                   |                  |                 |                 |                 |          |
|---|-------------------|-------------------|------------------|-------------------|------------------|-----------------|-----------------|-----------------|----------|
|   | -0.8 (-0.9, -0.7) | Culfornulurooo    |                  |                   |                  |                 |                 |                 |          |
|   | -0.9 (-1.0, -0.7) | Sulfonylureas     |                  |                   |                  |                 |                 |                 |          |
|   | -0.6 (-0.9, -0.4) | 0.2 (-0.13,0.4)   | Meglitinides     |                   |                  |                 |                 |                 |          |
|   | -0.7 (-1.2, -0.2) | 0.1 (-0.17,0.4)   | wieghtimues      |                   | _                |                 |                 |                 |          |
|   | –0.8 (–0.9, –0.6) | 0.0 (-0.1,0.1)    | -0.1 ( -0.4,0.2) | TZDs              |                  |                 |                 |                 |          |
|   | –1.0 (–1.2, –0.8) | 0.0 (-0.2,0.2)    | NA               | 1203              |                  |                 |                 |                 |          |
|   | -0.7 (-0.8, -0.6) | 0.10 (0.0,0.2)    | -0.1 (-0.3,0.2)  | 0.1 (-0.1,0.2)    | DPP-4 Inhibitors |                 |                 |                 |          |
|   | -0.7 (-0.8, -0.6) | 0.08 (0.0,0.2)    | NA               | -0.1 (-0.1,-0.0)  |                  |                 | _               |                 |          |
|   | -0.7 (-1.0, -0.5) | 0.05 (-0.2,0.3)   | -0.1 (-0.5,0.3)  | 0.0 (-0.2,0.3)    | -0.1 (-0.3,0.2)  | AG Inhibitors   |                 |                 |          |
|   | -0.7 (-0.9, -0.5) | NA                | NA               | NA                | NA               | AG IIIIIbitois  |                 |                 |          |
|   | -1.0 (-1.1, -0.8) | -0.2 (-0.3, -0.0) | -0.3 (-0.6,-0.0) | -0.2 (-0.4, -0.0) | -0.3 (-0.4,-0.1) | -0.2 (-0.5,0.1) | GLP-1 Analogues |                 |          |
|   | -0.8 (-1.0, -0.5) | -0.1 (-0.2,0.1)   | NA               | -0.2 (-0.6, -0.1) | -0.6 (-0.6,-0.5) | NA              | OLF-1 Analogues |                 |          |
|   | -0.9 (-1.2, -0.7) | -0.1 (-0.4,0.1)   | -0.3 (-0.6,0.1)  | -0.1 (-0.4,0.1)   | -0.2 (-0.5,0.0)  | -0.2 (-0.5,0.2) | 0.1 (-0.2,0.3)  | Basal Insulin   |          |
|   | NA                | NA                | NA               | NA                | -0.6 (-0.8,-0.4) | NA              | 0.1 (0.0,0.3)   | Busul Insulin   |          |
|   | -1.1 (-1.3, -0.8) | -0.3 (-0.5, -0.0) | -0.4 (-0.8,-0.1) | -0.3 (-0.6,-0.0)  | -0.4 (-0.6,-0.1) | -0.3 (-0.7,0.0) | -0.1 (-0.3,0.1) | -0.1 (-0.4,0.1) | Biphasic |
|   | NA                | -0.2 (-0.5,0.1)   | NA               | NA                | NA               | NA              | 0.1 (0.0,0.3)   | -0.2 (-0.6,0.3) | Insulin  |

| В | Placebo           | ← vs.             |                   |                   |                         |                 |                 |                |          |
|---|-------------------|-------------------|-------------------|-------------------|-------------------------|-----------------|-----------------|----------------|----------|
|   | 2.1 (1.3, 2.9)    | Sulfonylureas     |                   |                   |                         |                 |                 |                |          |
|   | 1.8 (1.3,2.3)     | Sunonylareas      |                   | _                 |                         |                 |                 |                |          |
|   | 1.8 (0.5, 3.1)    | -0.3 (-1.7, 1.1)  | Meglitinides      |                   |                         |                 |                 |                |          |
|   | 2.0 (-0.3,4.3)    | -0.5 (-1.4,0.4)   | wieghtimues       |                   |                         |                 |                 |                |          |
|   | 2.7 (1.9, 3.5)    | 0.6 (-0.1, 1.3)   | 0.9 (–0.6, 2.3)   | TZDs              |                         |                 |                 |                |          |
|   | 2.3 (1.9,2.7)     | 0.8 (–1.5,3.0)    | NA                | 1205              |                         |                 |                 |                |          |
|   | 0.3 (-0.4,1.1)    | -1.8 (-2.5, -1.1) | -1.5 (-2.9, 0.0)  | -2.4 (-3.1, -1.6) | DBB 4 Inhibitors        |                 |                 |                |          |
|   | 0.6 (0.3,0.9)     | -2.2 (-2.5,-1.9)  | NA                | -1.7 (-2.6,0.8)   | DPP-4 Inhibitors        |                 | _               |                |          |
|   | -0.9 (-2.2,0.4)   | -3.0 (-4.5, -1.5) | -2.7 (-4.6,-0.9)  | -3.6 (-5.1,-2.1)  | -1.2 (-2.8, 0.3)        | AG Inhibitors   |                 |                |          |
|   | -0.9 (-1.9,0.1)   | NA                | NA                | NA                | NA                      | AG IIIIIbitors  |                 |                |          |
|   | -1.8 (-2.9, -0.8) | -3.9 (-5.0, -2.9) | -3.6 (-5.2, -2.0) | -4.5 (-5.6, -3.4) | -2.2 (-3.1, -1.2)       | -0.9 (-2.6,0.8) | GLP-1 Analogues |                |          |
|   | -1.6 (-3.5,0.4)   | -2.7 (4.3,-1.1)   | NA                | -5.1 (-5.9, -4.3) | -2.0 (-2.9, -1.1)       | NA              | GLP-1 Analogues |                | _        |
|   | 1.7 (0.3, 3.1)    | -0.4 (-1.7, 0.9)  | -0.1 (-1.9, 1.7)  | -1.0 (-2.4, 0.4)  | 1.3 (0.1, 2.6)          | 2.6 (0.7, 4.5)  | 3.5 (2.2, 4.8)  | Basal Insulin  | ł        |
|   | NA                | NA                | NA                | NA                | NA 1.5 (0.9,2.1) NA 3.5 | 3.5 (1.5,5.2)   | Dasai insulin   | <u> </u>       |          |
|   | 3.1 (1.5, 4.7)    | 1.0 (-0.6, 2.5)   | 1.3 (-0.7, 3.3)   | 0.4 (-1.3, 2.0)   | 2.7 (1.2, 4.3)          | 4.0 (1.9, 6.1)  | 4.9 (3.2, 6.5)  | 1.4 (0.0, 2.8) | Biphasic |
|   | NA                | 0.7 (-0.1,1.5)    | NA                | NA                | NA                      | NA              | NA              | 1.6 (–0.2,3.4) | Insulin  |

| С | Placebo        | ← Vs.            |                |                |                   |                |                  |               |          |
|---|----------------|------------------|----------------|----------------|-------------------|----------------|------------------|---------------|----------|
| Ī | 7.5 (4.4,13.7) | Culfornalization |                |                |                   |                |                  |               |          |
|   | 4.4 (1.6,12.2) | Sulfonylureas    |                |                |                   |                |                  |               |          |
|   | 8.3 (3.3,23.4) | 1.1 (0.4,3.0)    | Meglitinides   |                |                   |                |                  |               |          |
|   | 6.6 (1.5,28.3) | 1.1 (0.5,2.3)    | wegittindes    |                |                   |                |                  |               |          |
|   | 0.9 (0.5,1.8)  | 0.1 (0.1,0.2)    | 0.1 (0.0,0.3)  | TZDs           |                   |                |                  |               |          |
|   | 1.6 (0.6,4.3)  | 0.2 (0.1,0.3)    | NA             | 1203           |                   |                |                  |               |          |
|   | 0.9 (0.6,1.6)  | 0.1 (0.1,0.2)    | 0.1 (0.0,0.3)  | 1.0 (0.6,1.9)  | DPP-4 Inhibitors  |                |                  |               |          |
|   | 0.8 (0.5,1.4)  | 0.1 (0.1,0.2)    | NA             | 1.7 (0.6,5.1)  | DFF-4 IIIIIDICOI3 |                | -                |               |          |
|   | 0.4 (0.0,6.6)  | 0.1 (0.0,0.9)    | 0.1 (0.00,0.9) | 0.4 (0.0,7.7)  | 0.4 (0.0 7.4)     | AG Inhibitors  |                  |               |          |
|   | 0.5 (0.0,5.6)  | NA               | NA             | NA             | NA                | Ad IIIIIbitoi3 |                  |               |          |
|   | 1.1 (0.5,2.3)  | 0.1 (0.1,0.3)    | 0.1 (0.0,0.4)  | 1.1 (0.5,2.6)  | 1.1 (0.6,2.2)     | 2.7 (0.1,95.1) | GLP-1 Analogues  |               |          |
|   | 1.0 (0.3,3.2)  | 0.1 (0.0,0.4)    | NA             | 0.5 (0.0,5.4)  | 1.2 (0.5,2.7)     | NA             | OLI -1 Analogues |               |          |
|   | 4.1 (1.7,10.7) | 0.6 (0.2,1.2)    | 0.5 (0.1,1.7)  | 4.5 (1.7,12.1) | 4.4 (2.0,10.1)    | 10.6 (0.5,395) | 3.9 (1.8,9.4)    | Basal Insulin |          |
|   | NA             | NA               | NA             | NA             | 5.5 (3.5,8.5)     | NA             | 4.6 (1.4,15.0)   | basar msum    |          |
|   | 7.0 (2.8,18.1) | 0.9 (0.4,2.1)    | 0.8 (0.2,2.9)  | 7.6 (3.0,20.2) | 7.5 (3.2,17.5)    | 17.9 (0.9,671) | 6.7 (2.9,15.7)   | 1.7 (0.8,3.7) | Biphasic |
|   | NA             | 1.2 (0.7,2.2)    | NA             | NA             | NA                | NA             | 2.9 (1.5,5.5)    | 2.2 (1.2,4.1) | Insulin  |

A1C = glycated hemoglobin; AG = alpha glucosidase; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; NA = not applicable; NMA = network meta-analysis; TZDs = thiazolidinediones; Vs. = versus.

Note: Tables showing the results of direct and mixed-treatment comparison network meta-analyses for A1C (A), body weight (B), and hypoglycemia (C). Results of the network meta-analysis are shown in black, non-italicized text, and the direct estimates are shown in blue, italicized text.

## APPENDIX 4: NETWORK META-ANALYSIS OF INDIVIDUAL AGENTS

Figure 5 shows the results of a sensitivity analysis for A1C conducted at the level of individual agents versus the class-level analysis used in the reference case. The effect sizes observed with the individual agents are generally similar to the overall effect size reported for the drug classes. There is considerable uncertainty with the effect sizes of agents used in only a single RCT (e.g., repaglinide, miglitol); therefore, the results of this sensitivity analysis should be interpreted with caution. A similar sensitivity analysis for body weight is shown in Figure 6.

| Drug Class            | Agent            | NMA Estimate (95% Crl) | ← Favours Favours →<br>Treatment Placebo           |
|-----------------------|------------------|------------------------|----------------------------------------------------|
| Sulfonylureas         | Glyburide        | –1.11 (–1.45, –0.77)   | <b>⊢−</b> −1                                       |
|                       | Glimepiride      | -0.83 (-0.96, -0.70)   | +++                                                |
|                       | Gliclazide       | -0.71 (-0.94, -0.49)   | <b>⊢</b> ●−1                                       |
|                       | Glipizide        | -0.64 (-0.87, -0.41)   | <b>⊢</b>                                           |
| Meglitinides          | Nateglinide      | -0.54 (-0.81, -0.27)   | <b>⊢_</b> ●1                                       |
|                       | Repaglinide      | –1.09 (–1.79, –0.41)   | <b>⊢−−−−−</b>                                      |
| Thiazolidinediones    | Pioglitazone     | -0.78 (-0.94, -0.63)   | <b>⊢→</b> -1                                       |
|                       | Rosiglitazone    | -0.86 (-1.20, -0.53)   | <b>⊢</b>                                           |
| DPP-4 inhibitors      | Sitagliptin      | -0.67 (-0.79, -0.53)   | H <b>-</b> -1                                      |
|                       | Saxagliptin      | -0.56 (-0.76, -0.37)   | <b>⊢</b> ∎1                                        |
|                       | Linagliptin      | -0.65 (-0.83, -0.47)   | <b>⊢</b> ∎-1                                       |
|                       | Vildagliptin     | -0.74 (-0.90, -0.59)   | <b>⊢●</b> -1                                       |
| GLP-1 analogues       | Liraglutide      | -0.97 (-1.20, -0.74)   | <b>⊢</b> ••••                                      |
|                       | Exenatide        | –1.01 (–1.19, –0.82)   | <b>⊢</b> ∎-1                                       |
| AG inhibitors         | Acarbose         | -0.84 (-1.10, -0.58)   | <b>⊢</b> ••••                                      |
|                       | Miglitol         | -0.42 (-0.87, 0.02)    | <b>⊢</b>                                           |
| <b>Basal insulins</b> | Insulin glargine | -0.92 (-1.18, -0.67)   | <b>⊢</b> ••                                        |
|                       | Insulin NPH      | –1.12 (–1.59, –0.66)   | <b>⊢</b>                                           |
| Biphasic insulins     | Biphasic aspart  | –1.22 (–1.51, –0.94)   | <b>⊢</b>                                           |
|                       |                  | -2.5                   | -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0                    |
|                       |                  |                        | Difference in ${\it \Delta}$ A1C from BL (95% CrI) |

Figure 5: Sensitivity Analysis for A1C — Individual Agent-Level Network Meta-analysis

 $\Delta$  = change; A1C = glycated hemoglobin; AG = alpha glucosidase; BL = baseline; CrI = credible interval; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; NA = not applicable; NMA = network meta-analysis; TZDs = thiazolidinediones. Note: All active treatments and placebo were provided in combination with metformin.

| Drug Class         | Agent            | NMA Estimate (95% Crl) | ← Favours Favours →<br>Treatment Placebo                 |
|--------------------|------------------|------------------------|----------------------------------------------------------|
| Sulfonylureas      | Glyburide        | 2.4 (0.8, 3.9)         | <b>⊢_</b> ●i                                             |
|                    | Glimepiride      | 2.3 (0.7, 3.9)         | <b>⊢</b> ●i                                              |
|                    | Gliclazide       | 1.4 (–0.9, 3.7)        | F                                                        |
|                    | Glipizide        | 3.6 (0.7, 6.5)         | <b>⊢</b>                                                 |
| Meglitinides       | Nateglinide      | 0.9 (–1.2, 3.1)        | F                                                        |
|                    | Repaglinide      | 3.3 (0.4, 6.1)         | <b>⊢−−−−</b> +                                           |
| Thiazolidinediones | Pioglitazone     | 2.7 (1.5, 4.0)         | <b>⊢</b> - <b>●</b> 1                                    |
|                    | Rosiglitazone    | 1.0 (-0.4, 2.4)        | <b>⊢_</b> ●4                                             |
| DPP-4 inhibitors   | Sitagliptin      | 1.1 (–0.3, 2.6)        | F1                                                       |
|                    | Saxagliptin      | 1.4 (–2.3, 5.2)        | <b>⊢</b>                                                 |
|                    | Linagliptin      | -0.2 (-3.1, 2.6)       | <b>⊢</b>                                                 |
|                    | Vildagliptin     | 0.7 (–1.0, 2.4)        | <b>⊢_</b> ●1                                             |
| GLP-1 analogues    | Liraglutide      | –1.0 (–3.0, 1.0)       | F                                                        |
|                    | Exenatide        | -2.1 (-3.7, -0.5)      | <b>⊢_●</b> i                                             |
| AG inhibitors      | Acarbose         | -0.5 (-2.4, 1.4)       | F                                                        |
|                    | Miglitol         | –1.8 (–4.5, 0.9)       | <b>⊢</b> 4                                               |
| Basal insulins     | Insulin glargine | 1.0 (–0.7, 2.8)        | F                                                        |
|                    | Insulin NPH      | 3.3 (1.0, 5.7)         | <b>⊢</b>                                                 |
| Biphasic insulins  | Biphasic aspart  | 2.5 (–1.0, 6.1)        | <b>⊢</b> I                                               |
|                    |                  | -10.0                  | -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0                      |
|                    |                  | D                      | ifference in $\Delta$ Body Weight (kg) from BL (95% Crl) |

Figure 6: Sensitivity Analysis for Body Weight — Individual Agent Level Network Meta-analysis

 $\Delta$  = change; AG = alpha glucosidase; BL = baseline; CrI = credible interval; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; NA = not applicable; NMA = network meta-analysis; TZDs = thiazolidinediones. Note: All active treatments and placebo were provided in combination with metformin.

### APPENDIX 5: SEVERE HYPOGLYCEMIA RESULTS IN INCLUDED TRIALS (ORIGINAL REVIEW AND UPDATE)

|                                        | .6: Summary of Severe                |              |                                |              |
|----------------------------------------|--------------------------------------|--------------|--------------------------------|--------------|
| Study                                  | Treatment 1                          | n/N          | Treatment 2                    | n/N          |
| Placebo Comparisons <sup>a</sup>       |                                      |              |                                |              |
| Charpentier et. al. 2001 <sup>59</sup> | Sulfonylurea                         | 2/147        | Placebo                        | 0/75         |
| Marre et. al. 2002 <sup>70</sup>       | Sulfonylurea                         | 2/103        | Placebo                        | 1/104        |
| Nauck et. al. 2006 <sup>73</sup>       | Sulfonylurea                         | 0/36         | Placebo                        | 0/36         |
| Forst et. al. 2010 <sup>89</sup>       | Sulfonylurea                         | 0/65         | Placebo                        | 0/71         |
| Marre et. al. 2002 <sup>71</sup>       | Meglitinide                          | 0/160        | Placebo                        | 0/152        |
| Moses et. al. 1999 <sup>72</sup>       | Meglitinide                          | 0/27         | Placebo                        | 0/27         |
| Einhorn et. al. 2000 <sup>62</sup>     | TZD                                  | 0/168        | Placebo                        | 0/160        |
| Fonseca et. al. 2009 <sup>63</sup>     | TZD                                  | 0/113        | Placebo                        | 0/116        |
| Gomez-Perez et. al. 2002 <sup>51</sup> | TZD                                  | 0/36         | Placebo                        | 0/34         |
| Goodman et. al. 2009 <sup>65</sup>     | DPP-4 inhibitor                      | 0/248        | Placebo                        | 0/122        |
| Charbonnel et. al. 2006 <sup>58</sup>  | DPP-4 inhibitor                      | 0/464        | Placebo                        | 0/237        |
| Bosi et. al. 2007 <sup>56</sup>        | DPP-4 inhibitor                      | 0/183        | Placebo                        | 0/181        |
| Forst et. al. 2010 <sup>89</sup>       | DPP-4 inhibitor                      | 0/66         | Placebo                        | 0/71         |
| Yang et. al. 2012 <sup>96</sup>        | DPP-4 inhibitor                      | 0/197        | Placebo                        | 0/198        |
| Taskinen et. al. 2011 <sup>93</sup>    | DPP-4 inhibitor                      | 0/524        | Placebo                        | 0/177        |
| Pan et. al. 2012 <sup>90</sup>         | DPP-4 inhibitor                      | 0/148        | Placebo                        | 0/144        |
| Van Gaal et. al. 2001 <sup>84</sup>    | AGI                                  | 0/78         | Placebo                        | 0/75         |
| DeFronzo et. al. 2005 <sup>60</sup>    | GLP-1 analogue                       | 0/113        | Placebo                        | 0/113        |
| Gao et. al. 2009 <sup>97</sup>         | GLP-1 analogue                       | 0/45         | Placebo                        | 1/46         |
| Nauck et. al. 2006 <sup>73</sup>       | GLP-1 analogue                       | 0/36         | Placebo                        | 0/36         |
| Active Comparisons <sup>a</sup>        | 0                                    | · · ·        |                                |              |
| Garber et. al. 2006 <sup>64</sup>      | Sulfonylurea                         | 0/160        | TZD                            | 0/158        |
| Matthews et. al. 2005 <sup>98</sup>    | Sulfonylurea                         | 0/313        | TZD                            | 0/317        |
| Umpierrez et. al. 2006 <sup>83</sup>   | Sulfonylurea                         | 0/96         | TZD                            | 0/107        |
| Pfutzner et. al. 2011 <sup>91</sup>    | Sulfonylurea                         | 0/146        | TZD                            | 0/142        |
| Ferrannini et. al. 2009 <sup>37</sup>  | Sulfonylurea                         | 10/1393      | DPP-4 inhibitor                | 0/1396       |
| Forst et. al. 2010 <sup>89</sup>       | Sulfonylurea                         | 0/65         | DPP-4 inhibitor                | 0/66         |
| Yang et. al. 2011 <sup>94</sup>        | Sulfonylurea                         | 2/231        | DPP-4 inhibitor                | 0/234        |
| Gallwitz et. al. 2012 <sup>42</sup>    | Sulfonylurea                         | 12/775       | DPP-4 inhibitor                | 1/776        |
| Goke et. al. 2010 <sup>44</sup>        | Sulfonylurea                         | 7/430        | DPP-4 inhibitor                | 0/428        |
| Gallwitz et. al. 2012 <sup>43</sup>    | Sulfonylurea                         | 0/508        | GLP-1 analogue                 | 1/511        |
| Kvapil et. al. 2006 <sup>68</sup>      | Sulfonylurea                         | 0/114        | Biphasic insulin               | 0/108        |
| Gallwitz et. al. 2011 <sup>41</sup>    | GLP-1 analogue                       | 0/181        | Biphasic insulin               | 0/173        |
| Barnett et. al. 2007 <sup>53</sup>     | GLP-1 analogue                       | 0/38         | Basal insulin                  | 1/38         |
| Bunck et. al. 2009 <sup>40</sup>       | GLP-1 analogue                       | 0/36         | Basal insulin                  | 0/33         |
| Pratley et. al. 2010 <sup>92</sup>     | GLP-1 analogue                       | 0/30         | DPP-4 inhibitor                | 0/33         |
| Bergenstal et. al. 2010 <sup>86</sup>  | GLP-1 analogue                       | 0/221        | DPP-4 inhibitor                | 0/219        |
| Bergenstal et. al. 2010 <sup>86</sup>  | GLP-1 analogue                       | 0/160        | TZD                            | 0/165        |
| Bolli et. al. 2009 <sup>55</sup>       | DPP-4 inhibitor                      | 0/295        | TZD                            | 0/183        |
| Bergenstal et. al. 2010 <sup>86</sup>  | DPP-4 inhibitor                      | 0/295        | TZD                            | 0/280        |
| Aschner et. al. 2012 <sup>85</sup>     | DPP-4 inhibitor                      | 1/264        |                                | 3/237        |
| Kilo et. al. 2003 <sup>67</sup>        |                                      |              | Basal insulin                  |              |
| Raskin et. al. 2003 <sup>77</sup>      | Biphasic insulin<br>Biphasic insulin | 0/93<br>0/79 | Basal insulin<br>Basal insulin | 0/47<br>0/78 |

AGI = alpha glucosidase inhibitor; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide; RCTs = randomized controlled trials;

TZD = thiazolidinedione.

<sup>a</sup> All active treatments and placebo were provided in combination with metformin.

## **APPENDIX 6: SERIOUS ADVERSE EVENTS IN INCLUDED TRIALS** (ORIGINAL REVIEW AND UPDATE)

| Table 17: S                              | Summary of Serious Adve | erse Events in S | econd-Line RCTs   |          |
|------------------------------------------|-------------------------|------------------|-------------------|----------|
| Study <sup>a</sup>                       | Treatment 1 + M         | n (%)            | Treatment 2 + Met | n (%)    |
| Placebo Comparisons <sup>b</sup>         |                         |                  |                   |          |
| Phillips et al. 2003 <sup>75</sup>       | AGI                     | 2 (5)            | Placebo           | 1 (2)    |
| Van Gaal et al. 2001 <sup>84</sup>       | AGI                     | 11 (14)          | Placebo           | 5 (7)    |
| Forst et al. 2010 <sup>89</sup>          | DPP-4 inhibitor         | 1 (2)            | Placebo           | 1 (1)    |
| Pan et al. 2012 <sup>90</sup>            | DPP-4 inhibitor         | 1 (0.7)          | Placebo           | 1 (0.7)  |
| Taskinen et al. 2011 <sup>93</sup>       | DPP-4 inhibitor         | 18 (3.4)         | Placebo           | 4 (2.3)  |
| Yang et al. 2011 <sup>95</sup>           | DPP-4 inhibitor         | 8 (2.8)          | Placebo           | 3 (1)    |
| Yang et al. 2012 <sup>96</sup>           | DPP-4 inhibitor         | 7 (3.6)          | Placebo           | 5 (2.5)  |
| Bosi et al. 2007 <sup>56</sup>           | DPP-4 inhibitor         | 5 (3)            | Placebo           | 8 (4)    |
| Ahren et al. 2004 <sup>100</sup>         | DPP-4 inhibitor         | 1 (2)            | Placebo           | 4 (8)    |
| Scott et al. 2008 <sup>82</sup>          | DPP-4 inhibitor         | 5 (5)            | Placebo           | 5 (5)    |
| Goodman et al. 2009 <sup>65</sup>        | DPP-4 inhibitor         | 7 (3)            | Placebo           | 3 (2)    |
| Raz et al. 2008 <sup>78</sup>            | DPP-4 inhibitor         | 0 (0)            | Placebo           | 5 (5)    |
| Charbonnel et al. 2006 <sup>58</sup>     | DPP-4 inhibitor         | 13 (3)           | Placebo           | 7 (3)    |
| DeFronzo et al. 2009 <sup>61</sup>       | DPP-4 inhibitor         | 8 (4)            | Placebo           | 5 (3)    |
| Cho et al. 2010 <sup>99</sup>            | Meglitinide             | 2 (2.8)          | Placebo           | 0 (0)    |
| Forst et al. 2010 <sup>89</sup>          | Sulfonylurea            | 1 (2)            | Placebo           | 1 (1)    |
| Scott et al. 2008 <sup>82</sup>          | TZD                     | 5 (6)            | Placebo           | 5 (5)    |
| Kaku 2009 <sup>45</sup>                  | TZD                     | 0 (0)            | Placebo           | 1 (1)    |
| Fonseca et al. 2000 <sup>63</sup>        | TZD                     | 5 (4)            | Placebo           | 5 (4)    |
| Gomez-Perez et al. 2002 <sup>51</sup>    | TZD                     | 0 (0)            | Placebo           | 0 (0)    |
| Leiter et al. 2005 <sup>69</sup>         | TZD                     | 2 (1)            | Placebo           | 2 (3)    |
| Active Comparisons <sup>b</sup>          |                         | - (-/            |                   | - (-)    |
| Nauck et al. 2007 <sup>47</sup>          | DPP-4 inhibitor         | 44 (8)           | Sulfonylurea      | 43 (7)   |
| Arechavaleta et al. 2011 <sup>38</sup>   | DPP-4 inhibitor         | 16 (3.1)         | Sulfonylurea      | 11 (2.1) |
| Gallwitz et al. 2012 <sup>42</sup>       | DPP-4 inhibitor         | 135 (17)         | Sulfonylurea      | 162 (21) |
| Goke et al. 2010 <sup>44</sup>           | DPP-4 inhibitor         | 39 (9.1)         | Sulfonylurea      | 32 (7.4) |
| Ferrannini et al. 2009 <sup>37</sup>     | DPP-4 inhibitor         | 99 (7)           | Sulfonylurea      | 132 (9)  |
| Blonde et al. 2009 <sup>54</sup>         | DPP-4 inhibitor         | 32 (2)           | TZD               | 22 (3)   |
| Bolli et al. 2009 <sup>55</sup>          | DPP-4 inhibitor         | 12 (4)           | TZD               | 25 (9)   |
| Bolli et al. 2008 <sup>101</sup>         | DPP-4 inhibitor         | 6 (2)            | TZD               | 13 (5)   |
| Scott et al. 2008 <sup>82</sup>          | DPP-4 inhibitor         | 5 (5)            | TZD               | 5 (6)    |
| Aschner et al. 2012 <sup>85</sup>        | DPP-4 inhibitor         | 8 (3)            | Basal insulin     | 15 (6)   |
| Bergenstal et al. 2010 <sup>86</sup>     | GLP-1 analogue          | 4 (3)            | TZD               | 10 (6)   |
| Pratley et al. 2010 <sup>92</sup>        | GLP-1 analogue          | 7 (3)            | DPP-4 inhibitor   | 8 (4)    |
| Gallwitz et al. 2012 <sup>43</sup>       | GLP-1 analogue          | 73 (14)          | Sulfonylurea      | 68 (13)  |
| Diamant et al. 2010 <sup>87</sup>        | GLP-1 analogue          | 11 (5)           | Basal insulin     | 10 (4)   |
| Umpierrez et al. <sup>83</sup>           | Sulfonylurea            | 7 (7)            | TZD               | 7 (7)    |
| Khanolkar et al. 2008 <sup>46</sup>      | Sulfonylurea            | 0 (0)            | TZD               | 0 (0)    |
| Papathanassiou et al. 2009 <sup>48</sup> | Sulfonylurea            | 0 (0)            | TZD               | 0 (0)    |
| Matthews et al. 2005 <sup>98</sup>       | Sulfonylurea            | 20 (6)           | TZD               | 15 (5)   |
| Pfutzner et al. 2011 <sup>91</sup>       | Sulfonylurea            | 5 (3.5)          | TZD               | 4 (2.7)  |
| Ristic et al. 2007 <sup>79</sup>         | Sulfonylurea            | 7 (7)            | Meglitinide       | 2 (2)    |
| Raskin et al. 2007 <sup>77</sup>         | Biphasic insulin        | 4 (5)            | Basal insulin     | 5 (6)    |

AGI = alpha glucosidase inhibitor; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; Met = metformin; TZD = thiazolidinedione.

<sup>a</sup> SAEs were not reported in Charbonnel et al.,<sup>57</sup> Charpentier et al.,<sup>59</sup> Derosa 2012 et al.,<sup>149</sup> Derosa 2010 et al.,<sup>157</sup> Filozof and Gautier 2010,<sup>88</sup> Gallwitz et al.2011,<sup>41</sup> Gao et al.,<sup>97</sup> Hamann et al.,<sup>152</sup> Home et al.,<sup>52</sup> Kvapil et al.,<sup>68</sup> Moses et al.,<sup>72</sup> Poon et al.,<sup>76</sup> Ristic et al.,<sup>153</sup> Wang et al. 2011,<sup>155</sup> Yang 2011 et al..<sup>94</sup> <sup>b</sup> All active treatments and placebo were provided in combination with metformin.

## APPENDIX 7: SUMMARY OF MODEL-FIT PARAMETERS AND RANKING

|              | Table 18: Model-fit Parameters for A     | All Network Meta-A        | nalyses                      |         |
|--------------|------------------------------------------|---------------------------|------------------------------|---------|
| Outcome      | Analysis                                 | Mean Residual<br>Deviance | Unconstrained<br>Data Points | DIC     |
| A1C          | Random effects                           | 57.7                      | 61                           | -26.298 |
|              | Fixed effects                            | 154.8                     | 61                           | 44.497  |
|              | Meta-regression for baseline A1C         | 55.87                     | 61                           | -29.113 |
|              | Meta-regression for duration of diabetes | 56.57                     | 61                           | -28.996 |
|              | Meta-regression for duration of RCT      | 60.33                     | 61                           | -25.677 |
|              | Removal of rosiglitazone studies         | 51.3                      | 53                           | -33.357 |
|              | Removal of agents without an NOC         | 47.1                      | 52                           | -15.478 |
|              | Removal of RCTs < 1 year in duration     | 12.09                     | 13                           | -14.673 |
|              | Six-month RCTs only                      | 25.14                     | 27                           | -6.518  |
|              | Removal of subgroup data                 | 51.13                     | 51                           | -23.508 |
|              | Agent-level network meta-analysis        | 58.52                     | 61                           | -17.162 |
| Body weight  | Random-effects                           | 36.57                     | 38                           | 99.339  |
|              | Agent-level network meta-analysis        | 35.92                     | 37                           | 96.724  |
| Hypoglycemia | Random-effects                           | 91.67                     | 100                          | 484.632 |

A1C = glycated hemoglobin; DIC = deviance information criterion; NOC = Notice of Compliance; RCTs = randomized controlled trials.

|              | Table 19: Probability Best and | Ranking from Reference Case Ar | nalysis     |  |  |
|--------------|--------------------------------|--------------------------------|-------------|--|--|
| Analysis     | Treatment                      | Probability and Ranks          | — Mean (SD) |  |  |
|              |                                | Probability Best               | Ranking     |  |  |
| A1C          | Placebo                        | 0.00 (0.00)                    | 9.0 (0.0)   |  |  |
|              | Sulfonylureas                  | 0.00 (0.04)                    | 4.7 (1.0)   |  |  |
|              | Meglitinides                   | 0.00 (0.07)                    | 6.9 (1.5)   |  |  |
|              | TZD                            | 0.00 (0.05)                    | 5.2 (1.2)   |  |  |
|              | DPP-4 inhibitor                | 0.00 (0.01)                    | 6.8 (0.9)   |  |  |
|              | AGI                            | 0.02 (0.14)                    | 5.6 (1.9)   |  |  |
|              | GLP-1 analogue                 | 0.16 (0.36)                    | 2.2 (0.8)   |  |  |
|              | Basal insulin                  | 0.08 (0.27)                    | 3.1 (1.4)   |  |  |
|              | Biphasic insulin               | 0.74 (0.44)                    | 1.4 (0.8)   |  |  |
| Body weight  | Placebo                        | 0.00 (0.01)                    | 3.1 (0.5)   |  |  |
|              | Sulfonylureas                  | 0.00 (0.00)                    | 6.6 (0.8)   |  |  |
|              | Meglitinides                   | 0.00 (0.00)                    | 6.1 (1.2)   |  |  |
|              | TZD                            | 0.00 (0.00)                    | 8.1 (0.7)   |  |  |
|              | DPP-4 inhibitor                | 0.00 (0.01)                    | 3.8 (0.5)   |  |  |
|              | AGI                            | 0.14 (0.34)                    | 2.0 (0.6)   |  |  |
|              | GLP-1 analogue                 | 0.86 (0.34)                    | 1.1 (0.3)   |  |  |
|              | Basal insulin                  | 0.00 (0.00)                    | 5.8 (1.0)   |  |  |
|              | Biphasic insulin               | 0.00 (0.00)                    | 8.4 (0.9)   |  |  |
| Overall      | Placebo                        | 0.05 (0.21)                    | 3.4 (1.2)   |  |  |
| Hypoglycemia | Sulfonylureas                  | 0.00 (0.00)                    | 7.9 (0.8)   |  |  |
|              | Meglitinides                   | 0.00 (0.00)                    | 8.0 (1.1)   |  |  |
|              | TZD                            | 0.12 (0.32)                    | 3.0 (1.3)   |  |  |
|              | DPP-4 inhibitor<br>AGI         | 0.08 (0.28)                    | 3.0 (1.1)   |  |  |
|              | GLP-1 analogue                 | 0.68 (0.47)                    | 2.2 (2.0)   |  |  |
|              | Basal insulin                  | 0.08 (0.27)                    | 3.5 (1.3)   |  |  |
|              | Biphasic insulin               | 0.00 (0.00)                    | 6.2 (0.7)   |  |  |
|              |                                | 0.00 (0.00)                    | 7.7 (0.9)   |  |  |

A1C = glycated hemoglobin; AG = alpha-glucosidase inhibitor; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; Met = metformin; TZD = thiazolidinedione.

#### APPENDIX 8: SUMMARY OF RCTS THAT WERE NOT INCLUDED IN THE NMA

| Study ID                               | Comparators                                                                             | Description                                                          |                                                                                                                                                                                                                                 | Summary of Key Results                                                                                             |                                                                                                            |
|----------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                        | (Added-on to Metformin)                                                                 |                                                                      | Glycemic Control                                                                                                                                                                                                                | Body Weight                                                                                                        | Hypoglycemia                                                                                               |
| EUREXA <sup>43</sup>                   | <ul> <li>Exenatide (10 mcg b.i.d.)</li> <li>Glimepiride (1 mg – MTD)</li> </ul>         | <ul> <li>48 months</li> <li>Open-label</li> <li>N = 1029</li> </ul>  | Glycemic failure <sup>a</sup> Fewer exenatide-treated patients had           treatment failure (41% vs. 54%; P =           0.002), RD = 12.4 (6.2 to 18.6), HR =           0.748 (0.623 to 0.899)           A1C < 7% and < 6.5% | Mean weight change favoured<br>exenatide compared with<br>glimepiride<br>(–3.32 kg vs. 1.15 kg; <i>P</i> < 0.0001) | Significantly fewer patients in<br>the exenatide group reported<br>hypoglycemia ( <i>P</i> < 0.0001)       |
| Cho et al.<br>2010 <sup>99</sup>       | <ul><li>Mitiglinide (10 mg t.i.d.)</li><li>Placebo</li></ul>                            | <ul> <li>16 weeks</li> <li>Double-blind</li> <li>N = 145</li> </ul>  | Mean change in A1C was greater with mitiglinide compared with placebo (– 0.7% vs. –0.4%; P = 0.002)                                                                                                                             | No difference between mitiglinide<br>and placebo ( $-0.1 \text{ vs.} -0.5 \text{ kg}$ ; $P = 0.218$ )              | One episode with mitiglinide<br>and none with placebo                                                      |
| Derosa et al.<br>2012 <sup>149</sup>   | <ul> <li>Exenatide (10 mcg b.i.d.)</li> <li>Placebo</li> </ul>                          | <ul> <li>12 months</li> <li>Double-blind</li> <li>N = 174</li> </ul> | Mean decrease in A1C favoured<br>exenatide over placebo ( $-1.2\%$ vs. $-$<br>0.4%; P < 0.05)                                                                                                                                   | Mean weight change favoured<br>exenatide over placebo (–6.4 kg vs.<br>–2.3 kg; P < 0.01)                           | Not reported                                                                                               |
| Wang et al.<br>2011 <sup>155</sup>     | <ul> <li>Acarbose (100 mg t.i.d.)</li> <li>Glyburide (5 mg t.i.d.)</li> </ul>           | <ul> <li>24 weeks</li> <li>Open-label</li> <li>N = 55</li> </ul>     | A1C was significantly reduced with acarbose ( $-0.7\%$ ; $P < 0.001$ ) and glyburide ( $-1.2\%$ ; $P < 0.001$ )                                                                                                                 | Mean weight decreased<br>significantly with acarbose (–1.5 kg;<br><i>P</i> < 0.002). Not reported for<br>glyburide | Hypoglycemia was more<br>common with glyburide<br>compared with acarbose<br>(23.1% vs. 0%)                 |
| Ahren et al.<br>2004 <sup>100</sup>    | <ul> <li>Vildagliptin (50 mg q.d.)</li> <li>Placebo</li> </ul>                          | <ul><li>12 weeks</li><li>Double-blind</li><li>N = 107</li></ul>      | A1C was significantly reduced with vildagliptin compared with placebo (MD = -0.7% [SE: 0.1]; <i>P</i> < 0.001)                                                                                                                  | No difference in change in body<br>weight between vildagliptin and<br>placebo groups (–0.2 kg in both)             | 2 patients in the vildagliptin<br>group experience an episode of<br>hypoglycemia                           |
| Schernthaner et al. 2004 <sup>49</sup> | <ul> <li>Gliclazide MR (30-120<br/>mg/day)</li> <li>Glimepiride (1-6 mg/day)</li> </ul> | <ul> <li>7 months</li> <li>Double-blind</li> <li>N = 219</li> </ul>  | No significant difference between the groups                                                                                                                                                                                    | No significant difference between the groups                                                                       | Hypoglycemia was less<br>common with gliclazide<br>compared with glimepiride<br>(3.7% vs. 8.9%; P = 0.003) |
| Von Bibra et<br>al. 2008 <sup>36</sup> | <ul> <li>Glimepiride (3 mg/day)</li> <li>Rosiglitazone (8 mg/day)</li> </ul>            | <ul> <li>4 months</li> <li>Open-label</li> <li>N = 13</li> </ul>     | No significant difference between the groups                                                                                                                                                                                    | Not reported                                                                                                       | One patient in the glimepiride group reported hypoglycemia                                                 |
| Khanolkar et<br>al. 2008 <sup>46</sup> | <ul> <li>Rosiglitazone (4 mg/day)</li> <li>Gliclazide (80 mg/day)</li> </ul>            | <ul> <li>6 months</li> <li>Open-label</li> <li>N = 50</li> </ul>     | No significant difference between the groups                                                                                                                                                                                    | Not reported                                                                                                       | Not reported                                                                                               |

b.i.d. = twice daily; HR = hazard ratio; MD = mean difference; MTD = maximum tolerated dose; NMA = network meta-analysis; RCT = randomized controlled trial; RD = risk difference; t.i.d. = three times daily; vs. = versus.

<sup>a</sup>The primary outcome of the EUREXA trial was time to inadequate glycemic control and need for alternative treatment (defined as an A1C of more than 9% after the first 3 months of treatment, or more than 7% at two consecutive visits after the first 6 months).

# APPENDIX 9: CRITICAL APPRAISAL OF INCLUDED RCTS (ORIGINAL REVIEW AND UPDATE)

|                                         |                                                   |                          | Table 20: Assessr       | ment of Interval V                           | alidity (Modifie                     | d SIGN-50 Checkli                                                         | st for RCTs)                                                      |                                                                                    |                              |                                                   |
|-----------------------------------------|---------------------------------------------------|--------------------------|-------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|
| Study                                   | Appropriate<br>and Clearly<br>Focused<br>Question | Randomized<br>Assignment | Adequate<br>Concealment | Blinding of<br>Subjects and<br>Investigators | Groups are<br>Similar at<br>Baseline | Only diff.<br>Between<br>Groups is<br>Treatment<br>Under<br>Investigation | Standard,<br>Valid, and<br>Reliable<br>Measurement<br>of Outcomes | Withdrawals<br>are<br>Acceptable<br>(< 20%) and<br>Comparable<br>Between<br>Groups | ITT<br>Analysis<br>Performed | Comparable<br>Results for<br>Multi-study<br>Sites |
| Diamant et al.<br>2012 <sup>158</sup>   | AA                                                | AA                       | AA                      | NAd                                          | AA                                   | PA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Wang et al.<br>2011 <sup>155</sup>      | AA                                                | AA                       | NAd                     | NAd                                          | AA                                   | PA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Yang et al. 2011 <sup>95</sup>          | AA                                                | AA                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Gallwitz et al.<br>2011 <sup>41</sup>   | AA                                                | NR                       | NAd                     | NAd                                          | AA                                   | PA                                                                        | AA                                                                | No                                                                                 | NAd                          | NAd                                               |
| Taskinen et al.<br>2011 <sup>93</sup>   | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | PA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Forst et al.<br>2010 <sup>89</sup>      | AA                                                | NR                       | AA                      | AA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Bunck et al.<br>2010 <sup>159</sup>     | WC                                                | AA                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | WC                           | NAd                                               |
| Bergenstal et al.<br>2010 <sup>86</sup> | AA                                                | AA                       | AA                      | WA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Forst et al.<br>2010 <sup>160</sup>     | AA                                                | NR                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Diamant et al.<br>2010 <sup>87</sup>    | AA                                                | AA                       | AA                      | NAd                                          | AA                                   | PA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Seck et al.<br>2010 <sup>161</sup>      | WC                                                | NR                       | NAd                     | AA                                           | РА                                   | WC                                                                        | AA                                                                | No                                                                                 | PA                           | NAd                                               |
| Derosa et al.<br>2012 <sup>149</sup>    | AA                                                | AA                       | AA                      | AA                                           | AA                                   | PA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Pan et al. 2012 <sup>90</sup>           | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Pratley et al.<br>2010 <sup>92</sup>    | AA                                                | NR                       | NAd                     | NAd                                          | AA                                   | РА                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |

|                                           |                                                   |                          | Table 20: Assessr       | ment of Interval V                           | /alidity (Modifie                    | d SIGN-50 Checkli                                                         | ist for RCTs)                                                     |                                                                                    |                              |                                                   |
|-------------------------------------------|---------------------------------------------------|--------------------------|-------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|
| Study                                     | Appropriate<br>and Clearly<br>Focused<br>Question | Randomized<br>Assignment | Adequate<br>Concealment | Blinding of<br>Subjects and<br>Investigators | Groups are<br>Similar at<br>Baseline | Only diff.<br>Between<br>Groups is<br>Treatment<br>Under<br>Investigation | Standard,<br>Valid, and<br>Reliable<br>Measurement<br>of Outcomes | Withdrawals<br>are<br>Acceptable<br>(< 20%) and<br>Comparable<br>Between<br>Groups | ITT<br>Analysis<br>Performed | Comparable<br>Results for<br>Multi-study<br>Sites |
| Aschner et al.<br>2012 <sup>85</sup>      | AA                                                | AA                       | AA                      | NAd                                          | AA                                   | РА                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Gallwitz et al.<br>2012 <sup>43</sup>     | AA                                                | AA                       | AA                      | NAd                                          | AA                                   | РА                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Cho et al. 2010 <sup>99</sup>             | AA                                                | NR                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Pratley et al.<br>2011 <sup>162</sup>     | AA                                                | NR                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Goke et al.<br>2010 <sup>44</sup>         | AA                                                | AA                       | AA                      | AA                                           | AA                                   | РА                                                                        | AA                                                                | No                                                                                 | NAd                          | NAd                                               |
| Arechavaleta et<br>al. 2011 <sup>38</sup> | AA                                                | AA                       | NAd                     | AA                                           | AA                                   | РА                                                                        | AA                                                                | Yes                                                                                | NAd                          | NAd                                               |
| Yang et al. 2011 <sup>94</sup>            | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | PA                                                                        | AA                                                                | No                                                                                 | NAd                          | NAd                                               |
| Davies et al.<br>2011 <sup>163</sup>      | AA                                                | AA                       | AA                      | AA                                           | AA                                   | РА                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Pfutzner et al.<br>2011 <sup>91</sup>     | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | NAd                          | NAd                                               |
| Gallwitz et al.<br>2012 <sup>42</sup>     | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | PA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Krobot et al.<br>2012 <sup>164</sup>      | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | РА                                                                        | AA                                                                | NAd                                                                                | NAd                          | NAd                                               |
| Yang et al. 2012 <sup>96</sup>            | AA                                                | AA                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Filozof and<br>Gautier 2010 <sup>88</sup> | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | PA                           | NAd                                               |
| Ahren et al. <sup>100</sup>               | AA                                                | NR                       | NAd                     | NR                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | WC                           | NAd                                               |
| Barnett et al. 53                         | AA                                                | AA                       | AA                      | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Berne et al. 165                          | AA                                                | AA                       | NAd                     | AA                                           | PA                                   | AA                                                                        | WC                                                                | Yes                                                                                | AA                           | NAd                                               |
| Blonde et al. <sup>54</sup>               | WC                                                | WC                       | AA                      | NAd                                          | WC                                   | PA                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Bolli et al. 101                          | AA                                                | NR                       | NAd                     | NR                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | NAd                          | NAd                                               |
| Bolli et al. 55                           | WC                                                | WC                       | WC                      | AA                                           | WC                                   | WC                                                                        | WC                                                                | No                                                                                 | PA                           | NAd                                               |

|                                     |                                                   |                          | Table 20: Assessr       | ment of Interval V                           | alidity (Modifie                     | d SIGN-50 Checkl                                                          | ist for RCTs)                                                     |                                                                                    |                              |                                                   |
|-------------------------------------|---------------------------------------------------|--------------------------|-------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|
| Study                               | Appropriate<br>and Clearly<br>Focused<br>Question | Randomized<br>Assignment | Adequate<br>Concealment | Blinding of<br>Subjects and<br>Investigators | Groups are<br>Similar at<br>Baseline | Only diff.<br>Between<br>Groups is<br>Treatment<br>Under<br>Investigation | Standard,<br>Valid, and<br>Reliable<br>Measurement<br>of Outcomes | Withdrawals<br>are<br>Acceptable<br>(< 20%) and<br>Comparable<br>Between<br>Groups | ITT<br>Analysis<br>Performed | Comparable<br>Results for<br>Multi-study<br>Sites |
| Bosi et al. 56                      | AA                                                | NR                       | NAd                     | NR                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | PA                           | NAd                                               |
| Brazg et al. <sup>39</sup>          | AA                                                | NR                       | NAd                     | AA                                           | PA                                   | AA                                                                        | PA                                                                | Yes                                                                                | NAd                          | NAd                                               |
| Bunck et al. 40                     | WC                                                | AA                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | WC                           | NAd                                               |
| Charbonnel<br>et al. <sup>58</sup>  | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | РА                                                                        | AA                                                                | No                                                                                 | PA                           | NAd                                               |
| Charbonnel<br>et al. <sup>57</sup>  | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Charpentier<br>et al. <sup>59</sup> | AA                                                | AA                       | AA                      | AA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| DeFronzo et al. 61                  | WC                                                | WC                       | WC                      | AA                                           | AA                                   | AA                                                                        | PA                                                                | No                                                                                 | AA                           | NAd                                               |
| DeFronzo et al. 60                  | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | WC                           | NAd                                               |
| Einhorn et al. 62                   | WC                                                | NR                       | NAd                     | NR                                           | AA                                   | WC                                                                        | WC                                                                | No                                                                                 | AA                           | NAd                                               |
| Feinglos et al. 150                 | AA                                                | NR                       | NAd                     | NR                                           | AA                                   | WC                                                                        | WC                                                                | Yes                                                                                | WC                           | NAd                                               |
| Ferrannini<br>et al. <sup>37</sup>  | WC                                                | NR                       | NAd                     | AA                                           | WC                                   | РА                                                                        | WC                                                                | Yes                                                                                | PA                           | NAd                                               |
| Fonseca et al. 63                   | WC                                                | WC                       | AA                      | AA                                           | AA                                   | WC                                                                        | WC                                                                | Yes                                                                                | AA                           | NAd                                               |
| Gao et al. 97                       | AA                                                | AA                       | NAd                     | AA                                           | AA                                   | AA                                                                        | PA                                                                | No                                                                                 | PA                           | NR                                                |
| Garber et al. <sup>64</sup>         | AA                                                | NR                       | NAd                     | WC                                           | WC                                   | WC                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Gomez-Perez<br>et al. <sup>51</sup> | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | WC                                                                        | WC                                                                | No                                                                                 | PA                           | NAd                                               |
| Goodman et al. 65                   | AA                                                | NR                       | NAd                     | NR                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | PA                           | NAd                                               |
| Halimi et al. <sup>66</sup>         | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | WC                                                                        | WC                                                                | No                                                                                 | PA                           | NAd                                               |
| Hamann et al. 152                   | AA                                                | AA                       | AA                      | NR                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Home et al. 52                      | AA                                                | WC                       | AA                      | NAd                                          | AA                                   | PA                                                                        | AA                                                                | NR                                                                                 | AA                           | NAd                                               |
| Home et al. 166                     | AA                                                | WC                       | AA                      | NAd                                          | AA                                   | PA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Kaku <sup>45</sup>                  | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | WC                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Khanolkar<br>et al. <sup>46</sup>   | AA                                                | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | РА                                                                | Yes                                                                                | AA                           | NAd                                               |

|                                        | Table 20: Assessment of Interval Validity (Modified SIGN-50 Checklist for RCTs) |                          |                         |                                              |                                      |                                                                           |                                                                   |                                                                                    |                              |                                                   |
|----------------------------------------|---------------------------------------------------------------------------------|--------------------------|-------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|
| Study                                  | Appropriate<br>and Clearly<br>Focused<br>Question                               | Randomized<br>Assignment | Adequate<br>Concealment | Blinding of<br>Subjects and<br>Investigators | Groups are<br>Similar at<br>Baseline | Only diff.<br>Between<br>Groups is<br>Treatment<br>Under<br>Investigation | Standard,<br>Valid, and<br>Reliable<br>Measurement<br>of Outcomes | Withdrawals<br>are<br>Acceptable<br>(< 20%) and<br>Comparable<br>Between<br>Groups | ITT<br>Analysis<br>Performed | Comparable<br>Results for<br>Multi-study<br>Sites |
| Kilo et al. 67                         | AA                                                                              | NR                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Kvapil et al. <sup>68</sup>            | AA                                                                              | AA                       | AA                      | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Leiter et al. 69                       | AA                                                                              | NR                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | PA                                                                | Yes                                                                                | PA                           | NAd                                               |
| Marre et al. <sup>70</sup>             | AA                                                                              | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | WC                           | NAd                                               |
| Marre et al. 71                        | AA                                                                              | WC                       | AA                      | WC                                           | WC                                   | WC                                                                        | WC                                                                | Yes                                                                                | WC                           | NAd                                               |
| Matthews<br>et al. <sup>98</sup>       | AA                                                                              | NR                       | NAd                     | AA                                           | AA                                   | РА                                                                        | NR                                                                | Yes                                                                                | PA                           | NAd                                               |
| McNulty et al. 167                     | AA                                                                              | NR                       | NAd                     | AA                                           | AA                                   | PA                                                                        | PA                                                                | No                                                                                 | AA                           | NAd                                               |
| Moses et al. 72                        | AA                                                                              | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Nauck et al. 47                        | WC                                                                              | NR                       | NAd                     | AA                                           | WC                                   | WC                                                                        | AA                                                                | No                                                                                 | PA                           | NAd                                               |
| Nauck et al. 73                        | AA                                                                              | NR                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Nauck et al. <sup>74</sup>             | AA                                                                              | AA                       | AA                      | AA                                           | PA                                   | PA                                                                        | AA                                                                | No                                                                                 | PA                           | NAd                                               |
| Papathanassiou<br>et al. <sup>48</sup> | AA                                                                              | PA                       | NAd                     | NAd                                          | WC                                   | AA                                                                        | AA                                                                | Yes                                                                                | WC                           | N/A                                               |
| Phillips et al. 75                     | AA                                                                              | NR                       | NAd                     | WC                                           | WC                                   | WC                                                                        | WC                                                                | Yes                                                                                | AA                           | NAd                                               |
| Poon et al. <sup>76</sup>              | WC                                                                              | NR                       | NAd                     | WC                                           | AA                                   | WC                                                                        | PA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Raskin et al. 168                      | WC                                                                              | NR                       | AA                      | NAd                                          | WC                                   | WC                                                                        | AA                                                                | No                                                                                 | WC                           | NAd                                               |
| Raskin et al. 77                       | WC                                                                              | NR                       | AA                      | NAd                                          | AA                                   | WC                                                                        | AA                                                                | No                                                                                 | WC                           | NAd                                               |
| Raz et al. <sup>78</sup>               | WC                                                                              | WC                       | NAd                     | NR                                           | AA                                   | PA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Ristic et al. 153                      | WC                                                                              | WC                       | AA                      | WC                                           | WC                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Ristic et al. 79                       | WC                                                                              | WC                       | WC                      | WC                                           | AA                                   | WC                                                                        | WC                                                                | No                                                                                 | AA                           | NAd                                               |
| Rodger et al. <sup>80</sup>            | AA                                                                              | NR                       | NAd                     | AA                                           | PA                                   | AA                                                                        | PA                                                                | NR                                                                                 | PA                           | NAd                                               |
| Rosenstock<br>et al. <sup>81</sup>     | AA                                                                              | NR                       | NAd                     | AA                                           | WC                                   | WC                                                                        | WC                                                                | Yes                                                                                | PA                           | NAd                                               |
| Schernthaner<br>et al. 49              | AA                                                                              | AA                       | NAd                     | WC                                           | NAd                                  | WC                                                                        | WC                                                                | Yes                                                                                | PA                           | NAd                                               |
| Scott et al. 82                        | AA                                                                              | NR                       | NAd                     | AA                                           | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | PA                           | NAd                                               |

|                                   | Table 20: Assessment of Interval Validity (Modified SIGN-50 Checklist for RCTs) |                          |                         |                                              |                                      |                                                                           |                                                                   |                                                                                    |                              |                                                   |
|-----------------------------------|---------------------------------------------------------------------------------|--------------------------|-------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|
| Study                             | Appropriate<br>and Clearly<br>Focused<br>Question                               | Randomized<br>Assignment | Adequate<br>Concealment | Blinding of<br>Subjects and<br>Investigators | Groups are<br>Similar at<br>Baseline | Only diff.<br>Between<br>Groups is<br>Treatment<br>Under<br>Investigation | Standard,<br>Valid, and<br>Reliable<br>Measurement<br>of Outcomes | Withdrawals<br>are<br>Acceptable<br>(< 20%) and<br>Comparable<br>Between<br>Groups | ITT<br>Analysis<br>Performed | Comparable<br>Results for<br>Multi-study<br>Sites |
| Umpierrez<br>et al. <sup>83</sup> | WC                                                                              | NR                       | NAd                     | NAd                                          | AA                                   | AA                                                                        | AA                                                                | Yes                                                                                | AA                           | NAd                                               |
| Van Gaal et al. <sup>84</sup>     | WC                                                                              | AA                       | NAd                     | AA                                           | WC                                   | AA                                                                        | AA                                                                | No                                                                                 | AA                           | NAd                                               |
| Von Bibra et al. <sup>36</sup>    | WC                                                                              | NR                       | NAd                     | AA                                           | PA                                   | AA                                                                        | WC                                                                | Yes                                                                                | PA                           | NAp                                               |
| Wolever et al. 156                | AA                                                                              | NR                       | NAd                     | AA                                           | PA                                   | AA                                                                        | AA                                                                | NR                                                                                 | РА                           | NAd                                               |

AA = adequately addressed; NAd = not addressed; Nap = not applicable; NR = not reported; PA = poorly addressed; QA = quality assessment; RCTs = randomized controlled trials SIGN-50 = Scottish Intercollegiate Guidelines Network; WC = well-covered.

|                                                             | Table 21: Assessment of External Validity for RCTs Included in the Update                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                                       | Key Limitations with External Validity                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Arechavaleta et<br>al. 2011 <sup>38</sup>                   | <ul> <li>30 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%).</li> <li>A1C target (lower end) (&lt; 6.5%) was lower than recommended in Canada.</li> </ul>                                                                                                                                                                           |
| Aschner et al.<br>2012 <sup>85</sup>                        | <ul> <li>24 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Metformin doses at baseline were not reported.</li> <li>Hypoglycemia definitions were not reported.</li> </ul>                                                                                                                                                                                                                                                       |
| Bergenstal et<br>al. 2010 <sup>86</sup>                     | <ul> <li>26 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Metformin doses at baseline were not reported.</li> <li>A1C target (lower end) (&lt; 6.5%) was lower than recommended in Canada.</li> <li>Hypoglycemia definitions were not reported.</li> <li>Exenatide QW was not available in Canada.</li> </ul>                                                                                                                  |
| Cho et al.<br>2010 <sup>99</sup>                            | <ul> <li>Conducted in Korea — population and care patterns may not be reflective of Canada.</li> <li>16 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Required &lt; 3 months of stable metformin dose before determining metformin failure.</li> </ul>                                                                                                                                                                         |
| Derosa et al.<br>2012 <sup>149</sup>                        | <ul> <li>Study designed primarily to detect differences in beta-cell function; other outcomes were secondary.</li> <li>Employed forced titration of trial medications independent of glycemic control, which is not reflective of clinical practice.</li> <li>Limited patients with BMI &lt; 30 kg/m<sup>2</sup> — results may not be applicable to morbidly obese individuals.</li> </ul>                                                                 |
| Diamant et al.<br>2010 <sup>87</sup><br>2012 <sup>158</sup> | <ul> <li>A1C target (lower end) (&lt; 6.5%) was lower than recommended in Canada.</li> <li>Exenatide QW was not available in Canada.</li> </ul>                                                                                                                                                                                                                                                                                                            |
| Filizof and<br>Gauthier<br>2010 <sup>88</sup>               | <ul> <li>Required &lt; 3 months of stable metformin dose before determining metformin failure.</li> <li>Hypoglycemia definitions were not reported.</li> </ul>                                                                                                                                                                                                                                                                                             |
| Forst et al.<br>2010 <sup>89</sup>                          | <ul> <li>12 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Metformin doses at baseline were not reported.</li> <li>Hypoglycemia definitions were not reported.</li> </ul>                                                                                                                                                                                                                                                       |
| Forst et al.<br>2010 <sup>160</sup>                         | <ul> <li>24 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%).</li> <li>Study designed primarily to detect erythrocyte deformability; other clinical outcomes were secondary.</li> </ul>                                                                                                                                              |
| Gallwitz et al.<br>2011 <sup>41</sup>                       | <ul> <li>26 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Metformin doses at baseline were not reported.</li> <li>Stable metformin dose duration for determining metformin failure was not reported.</li> <li>Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%).</li> <li>Hypoglycemia definitions were not reported.</li> <li>Exenatide QW was not available in Canada.</li> </ul> |
| Gallwitz et al.<br>2012 <sup>43</sup>                       | <ul> <li>Stable metformin dose duration for determining metformin failure was not reported.</li> <li>Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%).</li> <li>Hypoglycemia definitions were not reported.</li> <li>Exenatide QW was not available in Canada.</li> </ul>                                                                                                                                      |
| Gallwitz et al.<br>2012 <sup>42</sup>                       | <ul> <li>Stable metformin dose duration for determining metformin failure was not reported.</li> <li>Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%)</li> </ul>                                                                                                                                                                                                                                               |
| Goke et al.<br>2010 <sup>44</sup>                           | <ul> <li>Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%).</li> <li>Required &lt; 3 months of stable metformin dose before determining metformin failure.</li> <li>Severe hypoglycemia definitions were not reported</li> </ul>                                                                                                                                                                                |
| Pan et al.<br>2012 <sup>90</sup>                            | <ul> <li>24 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Conducted in China — population and care patterns may not be reflective of Canada.</li> <li>Required &lt; 3 months of stable metformin dose before determining metformin failure.</li> <li>Vildagliptin was not approved for use in Canada.</li> <li>Hypoglycemia definitions were not reported.</li> </ul>                                                          |

|                                       | Table 21: Assessment of External Validity for RCTs Included in the Update                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                 | Key Limitations with External Validity                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pfutzner et al.<br>2011 <sup>91</sup> | <ul> <li>24 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%).</li> <li>Study was designed primarily to detect diabetic dyslipidemia; other clinical outcomes were secondary.</li> <li>Pioglitazone/metformin fixed combination is not available in Canada.</li> </ul>                                                                      |
| Pratley 2010 <sup>92</sup>            | <ul> <li>26 weeks in duration — may not be indicative of long-term efficacy.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          |
| Pratley et al.<br>2011 <sup>162</sup> | • 26 weeks in duration (randomization phase) – may not be indicative of long-term efficacy                                                                                                                                                                                                                                                                                                                                                                       |
| Seck et al.<br>2010 <sup>161</sup>    | • Lower A1C threshold for determining metformin failure (6.5%) than recommended in Canada (7%).                                                                                                                                                                                                                                                                                                                                                                  |
| Taskinen et al.<br>2011 <sup>93</sup> | <ul> <li>24 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Hypoglycemia definitions were not reported.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| Wang et al.<br>2011 <sup>155</sup>    | <ul> <li>Conducted in Taiwan — population and care patterns may not be reflective of Canada.</li> <li>Required &lt; 3 months of stable metformin dose before determining metformin failure.</li> <li>Study designed primarily to detect differences in glycemic excursion and oxidative stress; other clinical outcomes were secondary.</li> </ul>                                                                                                               |
| Yang et al.<br>2011 <sup>95</sup>     | <ul> <li>24 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Conducted in Asian countries — population and care patterns may not be reflective of Canada.</li> <li>Required &lt; 3 months of stable metformin dose before determining metformin failure.</li> </ul>                                                                                                                                                                     |
| Yang et al.<br>2011 <sup>94</sup>     | <ul> <li>16 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Conducted in Asia — population and care patterns may not be reflective of Canada.</li> </ul>                                                                                                                                                                                                                                                                               |
| Yang et al.<br>2012 <sup>96</sup>     | <ul> <li>24 weeks in duration — may not be indicative of long-term efficacy.</li> <li>Conducted in China — population and care patterns may not be reflective of Canada.</li> <li>Metformin doses at baseline were 1,000 mg or 1,700 mg (did not specify maximal tolerated dose).</li> <li>Required &lt; 3 months of stable metformin dose before determining metformin failure</li> <li>A1C target (&lt; 6.5%) was lower than recommended in Canada.</li> </ul> |

A1C = glycated hemoglobin; BMI = body mass index; QW = once weekly; RCTs = randomized controlled trials.

# APPENDIX 10: RESULTS OF PHARMACOECONOMIC SENSITIVITY ANALYSES

| Scenario                                                                      | Result (\$/QALY)                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Case Analysis                                                       | Met+SU vs. Met: \$8,445<br>Met+AGI vs. Met+SU: \$452,630<br>Met+GLP-1 vs. Met+AGI: \$595,653<br>Met+Meg is dominated by Met+SU<br>Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI<br>Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and Met+DPP-4<br>Met+biphasic insulin is dominated by Met+GLP-1              |
| All patients in the model<br>assumed to add insulin<br>NPH when A1C ≥ 9%      | Met+AGI vs. Met+SU: \$515,034<br>Met+GLP1 vs. Met+SU: \$1,284,667<br>Met, Met+TZD, Met+AGI, Met+Meg, and Met+DPP-4 are dominated by Met+SU<br>Met+basal insulin is dominated by Met+SU, Met+TZD, and Met+DPP-4<br>Met+biphasic insulin is dominated by Met+GLP-1                                                                        |
| Insulins are removed as treatment options                                     | Met+SU vs. Met: \$8,445<br>Met+AGI vs. Met+SU: \$452,630<br>Met+GLP1 vs. Met+AGI: \$595,653<br>Met+Meg is dominated by Met+SU<br>Met+TZD is dominated by Met+SU and Met+AGI<br>Met+DPP-4 is dominated by Met+SU and Met+AGI                                                                                                             |
| Effect estimates from<br>pairwise meta-analyses<br>of RCTs                    | Met+SU vs. Met: \$11,717<br>Met+TZD vs. Met+SU: \$164,004<br>Met+AGI vs. Met+TZD: \$13,585<br>Met+Meg is dominated by Met+SU<br>Met+DPP-4 and Met+GLP-1 are dominated by Met+TZD<br>Met+basal insulin is dominated by Met+SU, Met+Meg, Met+TZD, Met+AGI, and<br>Met+DPP-4<br>Met+biphasic insulin is dominated by Met+TZD and Met+GLP-1 |
| Use of gliclazide instead<br>of glyburide as SU                               | Met+SU vs. Met: \$14,335<br>Met+AGI vs. Met+SU: \$388,457<br>Met+GLP1 vs. Met+AGI: \$181,421<br>Met+Meg is dominated by Met+SU<br>Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI<br>Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and Met+DPP-4<br>Met+biphasic insulin is dominated by Met+GLP1               |
| Model assumes a 50%<br>reduction in the price of<br>blood glucose test strips | Met+SU vs. Met: \$22,916<br>Met+AGI vs. Met+SU: \$494,680<br>Met+GLP-1 vs. Met+AGI: \$595,959<br>Met+biphasic insulin vs. Met+GLP-1: \$67,246<br>Met+Meg is dominated by Met+SU<br>Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI<br>Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and Met+DPP-4               |
| No test strip use among<br>non– hypoglycemia-<br>inducing OADs                | Met+SU vs. Met: \$18,221<br>Met+AGI vs. Met+SU: \$521,171<br>Met+GLP-1 vs. Met+AGI: \$805,204<br>Met+biphasic insulin vs. met+GLP-1: \$267,289<br>Met+Meg is dominated by Met+SU                                                                                                                                                        |

| Scenario                       | Result (\$/QALY)                                                       |
|--------------------------------|------------------------------------------------------------------------|
|                                | Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI              |
|                                | Met+basal insulin is dominated by Met+SU, Met+AGI, and Met+TZD         |
| Reduction in HRQoL             | Met+SU vs. Met: \$15,540                                               |
| resulting from weight          | Met+AGI vs. Met+SU: \$71,291                                           |
| gain (NICE) <sup>114,115</sup> | Met+GLP-1 vs. Met+AGI: \$430,009                                       |
|                                | Met+Meg is dominated by Met+SU                                         |
|                                | Met+TZD is dominated by Met+AGI and Met+DPP-4                          |
|                                | Met+DPP-4 is dominated by Met+AGI                                      |
|                                | Met+basal insulin is dominated by Met+AGI and Met+DPP-4                |
|                                | Met+biphasic insulin is dominated by Met+AGI, Met+DPP-4, and Met+GLP-1 |
| Disutilities for diabetes-     | Met+SU vs. Met: \$9,574                                                |
| related complications          | Met+AGI vs. Met+SU: \$323,333                                          |
| obtained from group of         | Met+GLP-1 vs. Met+AGI: \$523,205                                       |
| patients with type 2           | Met+Meg is dominated by Met+SU                                         |
| diabetes                       | Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI              |
|                                | Met+basal insulin is dominated by Met+SU, Met+AGI, and Met+TZD         |
|                                | Met+biphasic insulin is dominated by Met+GLP-1                         |
| No HRQoL decrement             | Met+SU vs. Met: \$10,416                                               |
| for fear of severe             | Met+AGI vs. Met+SU: \$519,194                                          |
| hypoglycemia                   | Met+basal insulin vs. Met+AGI: \$1,300,360                             |
| nypogiyeenna                   | Met+GLP-1 vs. Met+Basal Insulin: \$348,297                             |
|                                | Met+Meg is dominated by Met+SU                                         |
|                                | Met+DPP-4 and Met+TZD are dominated by Met+SU and Met+AGI              |
|                                | Met+biphasic insulin is dominated by Met+GLP-1                         |
| Model incorporates             | Met+SU vs. Met: \$8,445                                                |
| increased risk of CHF          | Met+AGI vs. Met+SU: \$452,630                                          |
| and upper extremity            | Met+GLP-1 vs. Met+AGI: \$595,653                                       |
| fractures in patients          | Met+Meg is dominated by Met+SU                                         |
| using TZDs (safety data)       | Met+DPP-4 is dominated by Met+SU and Met+AGI                           |
|                                | Met+basal insulin is dominated by Met+SU, Met+AGI, and Met+DPP-4       |
|                                | Met+biphasic insulin is dominated by Met+GLP-1                         |
|                                | Met+TZD is dominated by Met+SU, Met+Meg, and Met+AGI                   |
| Model incorporates             | Met+SU vs. Met: \$8,445                                                |
| reduced HRQoL                  | Met+SU vs. Met. 36,445<br>Met+GLP-1 vs. Met+SU: \$562,589              |
| associated with                | Met+Meg, Met+TZD and Met+DPP-4 are dominated by Met+SU                 |
| increased                      | Met+AGI is dominated by Met+SU and Met+Meg                             |
| gastrointestinal               | Met+basal insulin is dominated by Met+SU, Met+TZD, and Met+DPP-4       |
| symptoms among                 | Met+biphasic insulin is dominated by Met+30, Met+2D, and Met+DFF-4     |
| patients using AGI             |                                                                        |
|                                | Mati Silve Mati Ś9.445                                                 |
| Long-acting insulin            | Met+SU vs. Met: \$8,445                                                |
| analogue cost instead of       | Met+AGI vs. Met+SU: \$452,630                                          |
| insulin NPH                    | Met+GLP-1 vs. Met+AGI: \$595,653                                       |
|                                | Met+Meg is dominated by Met+SU                                         |
|                                | Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI              |
|                                | Met+biphasic insulin is dominated by Met+GLP-1                         |
|                                | Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and DPP-4  |
| Higher baseline rate of        | Met+SU vs. Met: \$10,581                                               |
| mild to moderate               | Met+AGI vs. Met+SU: \$429,361                                          |
| hypoglycemia                   | Met+GLP-1 vs. Met+AGI: \$595;653                                       |
|                                | Met+Meg is dominated by Met+SU                                         |

| Scenario                    | Result (\$/QALY)                                                                   |
|-----------------------------|------------------------------------------------------------------------------------|
|                             | Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI                          |
|                             | Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and Met+DPP-4          |
|                             | Met+biphasic insulin is dominated by Met+GLP-1                                     |
| Larger disutility for mild  | Met+SU vs. Met: \$11,039                                                           |
| to moderate                 | Met+AGI vs. Met+SU: \$286,884                                                      |
| hypoglycemia                | Met+GLP-1 vs. Met+AGI: \$604,415                                                   |
|                             | Met+Meg is dominated by Met+SU                                                     |
|                             | Met+TZD and Met+DPP-4 are dominated by Met+AGI                                     |
|                             | Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and DPP-4              |
|                             | Met+biphasic insulin is dominated by Met+AGI and Met+GLP-1                         |
| Disutility of mild or       | Met+SU vs. Met: \$15,056                                                           |
| moderate hypoglycemia       | Met+GLP1 vs. Met+SU: \$1,029,960                                                   |
| set at 0.0052, as per       | Met+Meg is dominated by Met+SU                                                     |
| NICE study <sup>116</sup>   | Met+AGI is dominated by Met+SU                                                     |
|                             | Met+TZD is dominated by Met+SU and Met+AGI                                         |
|                             | Met+DPP-4 is dominated by Met+SU and Met+AGI                                       |
|                             | Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, Met+Meg, and Met+DPP-4 |
|                             | Met+biphasic insulin is dominated by Met+GLP1                                      |
| Cost of mild to moderate    | Met+SU vs. Met: \$12,502                                                           |
| hypoglycemia event set      | Met+AGI vs. Met+SU: \$429,404                                                      |
| at \$93 (Canadian), as per  | Met+GLP1 vs. Met+AGI : \$595,681                                                   |
| Brod et al. <sup>169</sup>  | Met+Meg is dominated by Met+SU                                                     |
|                             | Met+TZD is dominated by Met+SU and Met+AGI                                         |
|                             | Met+DPP-4 is dominated by Met+SU and Met+AGI                                       |
|                             | Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and Met+DPP-4          |
|                             | Met+biphasic insulin is dominated by Met+GLP1                                      |
| Cost of DPP-4 inhibitors    | Met+SU vs. Met : \$8,445                                                           |
| is \$2.25 instead of \$2.55 | Met+AGI vs. Met+SU: \$452,630                                                      |
|                             | Met+GLP-1 vs. Met+AGI: \$595,653                                                   |
|                             | Met+Meg is dominated by Met+SU                                                     |
|                             | Met+TZD and Met+DPP-4 are dominated by Met+SU and Met+AGI                          |
|                             | Met+basal insulin is dominated by Met+SU, Met+AGI, Met+TZD, and Met+DPP-4          |
|                             | Met+biphasic insulin is dominated by Met+GLP-1                                     |

A1C = glycated hemoglobin; AGI = alpha-glucosidase inhibitor; CHF = congestive heart failure; DPP-4 = dipeptidyl peptidase-4; GLP-1 = glucagon-like peptide-1; HRQoL = health-related quality of life; Meg = meglitinide; Met = metformin; NICE = National Institute for Health and Clinical Excellence; NPH = neutral protamine Hagedorn; OADs = oral antidiabetes drugs; RCT = randomized controlled trial; QALY = quality-adjusted life-year; SU = sulfonylurea; TZD = thiazolidinedione; vs. = versus.

## APPENDIX 11: BASE-CASE RESULTS FROM THE 2010 CADTH PHARMACOECONOMIC REPORT

| Treatment                    | Average Costs<br>Incurred Over<br>Lifetime | Average QALYs<br>Gained Over<br>Lifetime | Incremental Cost-Effectiveness Results                              |
|------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------|
| Metformin                    | \$39,924                                   | 8.7194                                   | N/A                                                                 |
| Sulfonylurea                 | \$40,669                                   | 8.7777                                   | \$12,757 per QALY (relative to metformin)                           |
| Meglitinides                 | \$42,269                                   | 8.7682                                   | Meglitinides dominated by sulfonylureas                             |
| TZD                          | \$46,202                                   | 8.7807                                   | \$4,621,828 per QALY (relative to alpha-<br>glucosidase inhibitors) |
| DPP-4 inhibitors             | \$47,191                                   | 8.7795                                   | DPP-4 inhibitors dominated by TZD                                   |
| Alpha-glucosidase inhibitors | \$42,797                                   | 8.7800                                   | \$939,479 per QALY (relative to sulfonylureas)                      |
| Basal insulin                | \$47,348                                   | 8.7686                                   | Basal insulin dominated by TZD                                      |
| Biphasic insulin             | \$52,367                                   | 8.7761                                   | Biphasic insulin dominated by TZD                                   |

CADTH = Canadian Agency for Drugs and Technologies in Health; DPP-4 = dipeptidyl peptidase-4; in; N/A = not applicable; QALY = quality-adjusted life-year; TZD = thiazolidinedione.

## APPENDIX 12: SENSITIVITY ANALYSES FROM 2010 CADTH PHARMACOECONOMIC REPORT

| Scenario                               | Result (\$/QALY)                                                |
|----------------------------------------|-----------------------------------------------------------------|
| Reference case analysis                | Met+SU vs. Met: \$12,757                                        |
|                                        | Met+AGI vs. Met+SU: \$939,479                                   |
|                                        | Met+TZD vs. Met+AGI:\$4,621,828                                 |
|                                        | Met+Meg is dominated by Met+SU                                  |
|                                        | Met+DPP-4, Met+basal insulin, and Met+biphasic insulin are      |
|                                        | dominated by Met+TZD                                            |
| All patients not on an insulin assumed | Met+SU vs. Met: \$44,373                                        |
| to add insulin NPH (0.75 U/kg/day)     | Met+AGI, Met+Meg, Met+TZD, Met+DPP-4, Met+basal insulin, and    |
| when A1C ≥ 9%                          | Met+biphasic insulin are dominated by Met+SU                    |
| Effect estimates from pairwise meta-   | Met+SU vs. Met: \$13,080                                        |
| analyses of RCTs                       | Met+TZD vs. Met+SU: \$465,004                                   |
|                                        | Met+AGI is dominated by a blend of Met+SU and Met+TZD           |
|                                        | Met+Meg is dominated by Met+SU                                  |
|                                        | Met+DPP-4, Met+basal insulin and Met+biphasic insulin are       |
|                                        | dominated by Met+TZD                                            |
| Model assumes a 50% reduction in the   | Met+SU vs. Met: \$9,102                                         |
| price of blood glucose test strips     | Met+AGI vs. Met+SU: \$1,033,639                                 |
|                                        | Met+TZD vs. Met+AGI: \$4,621,828                                |
|                                        | Met+Meg is dominated by Met+SU                                  |
|                                        | Met+DPP-4, Met+basal insulin, and Met+biphasic insulin are      |
|                                        | dominated by Met+TZD                                            |
| No test strip use among non–           | Met+SU vs. Met: \$47,023                                        |
| hypoglycemia- inducing OADs            | Met+AGI vs. Met+SU: \$56,612                                    |
|                                        | Met+TZD vs. Met+AGI: \$4,621,828                                |
|                                        | Met+Meg is dominated by Met+SU                                  |
|                                        | Met+DPP-4, Met+baal insulin, and Met+biphasic insulin are       |
|                                        | dominated by Met+TZD                                            |
| Reduction in HRQoL resulting from      | Met+SU vs. Met: \$17,839                                        |
| weight gain                            | Met+AGI vs. Met+SU: \$80,453                                    |
|                                        | Met+Meg is dominated by Met+SU                                  |
|                                        | Met+TZD, Met+DPP-4, Met+basal insulin, and Met+biphasic are     |
|                                        | dominated by Met+AGI                                            |
| Disutilities for diabetes-related      | Met+SU vs. Met: \$11,694                                        |
| complications obtained from group of   | Met+AGI vs. Met+SU: \$575,841                                   |
| patients with type 2 diabetes          | Met+Meg is dominated by Met+SU                                  |
|                                        | Met+TZD, Met+DPP-4, Met+basal insulin, and Met+biphasic are     |
|                                        | dominated by Met+AGI                                            |
| Higher baseline rate of mild to        | Met+SU vs. Met: \$12,757                                        |
| moderate hypoglycemia                  | Met+AGI vs. Met+SU: \$938,719                                   |
|                                        | Met+TZD vs. Met+AGI: \$4,619,894                                |
|                                        | Met+Meg is dominated by Met+SU                                  |
|                                        | Met+DPP-4, Met+basal insulin, and Met+biphasic are dominated by |
|                                        | Met+TZD                                                         |

| Scenario                             | Result (\$/QALY)                                            |
|--------------------------------------|-------------------------------------------------------------|
| No HRQoL decrement for fear of       | Met+SU vs. Met: \$16,860                                    |
| severe hypoglycemia                  | Met+AGI vs. Met+SU: \$130,967                               |
|                                      | Met+TZD vs. Met+AGI: \$4,924,369                            |
|                                      | Met+Meg is dominated by Met+SU                              |
|                                      | Met+DPP-4, Met+basal insulin, and Met+biphasic insulin are  |
|                                      | dominated by Met+TZD                                        |
| Model incorporates increased risk of | Met+SU vs. Met: \$12,757                                    |
| CHF and upper extremity fractures in | Met+AGI vs. Met+SU: \$939,479                               |
| patients using TZDs (safety data)    | Met+Meg is dominated by Met+SU                              |
|                                      | Met+TZD, Met+DPP-4, Met+basal insulin, and Met+biphasic are |
|                                      | dominated by Met+AGI                                        |
| Model incorporates reduced HRQoL     | Met+SU vs. Met: \$12,757                                    |
| associated with increased            | Met+TZD vs. Met+SU: \$843,306                               |
| gastrointestinal symptoms among      | Met+Meg and Met+AGI are dominated by Met+SU                 |
| patients using AGI                   | Met+DPP-4, Met+basal insulin, and Met+biphasic insulin are  |
|                                      | dominated by Met+TZD                                        |

A1C = glycated hemoglobin; AGI = alpha-glucosidase inhibitor; CHF = congestive heart failure; DPP-4 = dipeptidyl peptidase-4; HRQoL = health-related quality of life; Meg = meglitinide; Met = metformin; NPH = neutral protamine Hagedorn; RCT = randomized controlled trial; QALY = quality-adjusted life-year; SU = sulfonylurea; TZD = thiazolidinedione; U = units; vs. = versus.